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In [Mo21 and [MM] Mond and Marar obtain a formula relating the A e- codimension 

of map germs f0: ~2, 0 ~ C3,0 to the Euler characteristic of the image of a stable 

perturbation ft of f0. This has been proven to hold quite generally for such map germs by de 

Jong and Pellikaan (unpublished) and by de Jong and van Straten [JS]. One curious aspect of 

this formula is the presence of the A e- codimension, which seems to have little relation with 

the image of ft. This codimension is related by de Jong and van Straten to the dimension of the 

space of deformations of X = Image(f0) for which the singular set of X deforms flatly. Their 

arguments depend strongly upon X being a surface singularity in C 3. 

In this paper, we derive another relation between A- equivalence and properties of 

image(f0). This relation is valid for all dimensions and directly relates the A e- codimension of 

f0 with a codimension of a germ defining Image(f0) as a section of the image of a stable germ. 

F 
n ~ s 

,0 ~ cP,o 

diagram 1 1" 1' go 

fo 
on,0 ~ cP,o 

We recall that by Mather [M-IV], if f0: Cn, 0 * CP,0 is a holomorphic germ of 

finite singularity type (i.e. finite contact codimension) then there is a stable germ 
' p ,  

F: cn',0 * ~P,0 and a germ of an immersion go: ~P,0 ~ ¢ ,0 with go transverse to 

F such that f0 is obtained as a pull-back in diagram 1 (F is the stable unfolding of f0 [M-IV]). 

The germ go has been used to determine A-determinacy properties of f0 by 

Martinet [Ma2] and topological determinacy properties by du Plessis [DP]. However, there was 

lacking a precise relation between equivalence for the germ go and the .~- equivalence of f0- In 

this paper we derive such a relation. 

Let V = D(F) denote the discriminant of F (which is also Image(F) when n' < p'). 

Given a variety-germ V,0 c cP',0 there is a notion of "contact equivalence preserving V" on 
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germs h: ~m,0 ) ~P',0, defined by the action of a group ~ [ D2]. 

The main results here concern the relation between 9f. V - equivalence for 

A- equivalence for f0. They are: 

go and 

1) go has finite ~ - codimension if and only if f0 has finite A- codimension; 

2) if we denote the extended tangent spaces to the A- orbit of f0 and the ~ - orbit of go by 

TAe.f 0 and TKv,e'g0, with associated normal spaces 

NAe-f 0 = 0(f0)/TAe.f 0 and NKv,e'g0 = 0(g0)/TKv,e'g0 

then these normal spaces are isomorphic as 0cp,0-modules (theorem 2); 

3) taking dimensions in (2) we obtain (theorem 1) 

Ae-codimension(f0) = 9f.V,e-codimension(g0). 

4) if we replace the germ f0 and the stable germ F by multi-germs f0: cn, S ) •P,0 and 
n' F: C ,S ) cP',0 with f0 finitely determined and F stable then 1) - 3) remain valid (see 

theorem 3; however, to keep notation simple we give the proofs for the case where ISl= 1 and 

observe that they work for all finite S). 

The third result allows us to place the Mond-Marar formula into a common context 

with other formulas which relate the algebraic codimension of (nonlinear) sections of varieties 

to Euler characteristics of their perturbations. 

As corollaries of these results and their proofs we obtain: i) sufficient conditions for 

unfoldings of f0 to be A- trivial in terms of the corresponding unfoldings of go being ~(~r- 

trivial (but it is unknown whether the converse holds); ii) a proof that unfoldings of f0 are A- 

versal if and only if the corresponding unfoldings of go are KV - versal and iii) a 

characterization of  the versality discriminant as the set of points where go fails to be transverse 

to V and an explicit method for computing the versality discriminant for unfoldings of 

hypersurfaces. 

The author is especially grateful to the organizers of the special year in bifurcation 

and singularity theory at the University of Warwick for their generous hospitality and support. 
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§1 A and Kv-equivalence 

Here we recall several basic properties of A and Kv-equivalence; while those of 

A-equivalence are generally well-known, those of Kv-equivalence are less so. The key 

properties of these groups which we are interested in are: their tangent spaces and infinitesimal 

conditions for versality, infinitesimal conditions for triviality of unfoldings, and geometric 

characterizations offinitedeterminacy. 

All germs which we consider will be holomorphic. The two principal notions of 

equivalence for map germs are A and K-equivalence. We denote the space of holomorphic 

germs f 0 : ~ s , 0  ~ Ct,0 by Cs, t and use local coordinates x for C s and y for t .  With D n 

denoting the group of germs of diffeomorphisms (p : cn,0 ~ cn ,0 ,  the group A = D s × D t 

acts on Cs, t by ((P,~/)'f0 = ~v°f00(P 1. The group K (contact equivalence) consists of 

H ~  Ds+ t such that there is an h c  D s so that H o i = i . h  and r c . H = h o r c ,  where i(x)= 

(x,0) is the inclusion i : ~:s ~ ~s+t and 7t(x,y) = x is the projection 7~ : C s+t ~ ~:s. Then, K 

acts on Cs, t by 

(h(x), H.f(x)) = H(x, f(x)), 

i.e. graph(H.f) = H(graph(f)). Germs are A or K-equivalent if they lie in common orbits of 

the group actions. 

An unfolding of f0 is a germ f : ¢s+q,0 ~ ~t+q,0 of the form f(x,u) = (f(x,u),u) 

with f(x,0) = f0(x) (here u denotes local coordinates for cq,0). Both A and K extend to 

actions on unfoldings: if 9 ~ Ds+ q and ~ e Dt+ q are unfoldings then ((p,~v)-f = ~V * f * (p-i 

while if H ~ D.+.,_ is an unfolding with an unfolding h e D._^ so that H .  i' = i ' .  h and t'rq ~-r , q s+q s+t+q 
n '*  H = h * x' (and i' and x are inclusions and projections for • and • ). Then 

(la(x,u), H-f(x,u)) = H(x,f(x,u), u), 

If (V,O) c c t , o  is a germ of a variety then we can define a subgroup of K 

K V = {He K : H ( ~  s×V)  C-C s×V} 

and similarly for unfoldings. This yields Kv-equivalence. Just as K-equivalence captures 

the equivalence of the germs of varieties f0-1(0), so too Kv-equivalence captures the 

equivalence of the germs of varieties f0-1(V). 

For G = A, K or ~ / ,  we say that an unfolding f of f0 is a G-trivial unfolding if 

it is G-equivalent to the trivial unfolding f0 × id~:q. It is G-trivial as a family if the G- 

equivalence preserves the origin for all parameter values. If  f l  (x,u,v) = (fl (x,u,v), u,v) is an 

unfolding of f0 so that fl(x,u,0) = fl(x,u), then fl  will be said to extend f. An extension 
f l  of f is G-trivial if it is G-equivalent to f × id by an equivalence which is the identity 

when v = 0. Lastly, an unfolding f is G-versal if for any other unfolding g : ~:s+r,0 

ct+r,0 of f0, there is a germ ~. : ~r,0 ~ cq,0 such that ~.*f(x,v) = (f(x,k(v)), v) is G- 

equivalent to g. 
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Tangent spaces 

For ~s,0 with local coordinates x, we denote the ring of  holomorphic germs •¢So by 

C x with maximal ideal m x, and similarly with u also denoting local coordinates for ~;q, Cx, u 

denotes 19¢s+q0, etc. Also for f0 : cs,0 -~ ~t,0, the ring homomorphism f0:'CY ~ Cx, 

induced by composition, will be understood without being explicitly stated. 

The tangent space to Cs, t at fo consists of germs of vector fields ~ : Cs,0 ~ T¢  t such 

that ~ .  ~ =  f0 and is denoted by 0( f0)~  C x { ~ i }  (here the R-module generated by 

CPl ..... ~Pk is denoted by R{q~ 1 ..... Cpk } or R{cPi} if k is understood). Also, 0 s ---0(ides)~ C x 

{~-~.} and similarly for 0 t. The extended to A and K (which allow movement tangent spaces 

of the source and/or target) are given by 

T~fe.f o = C x +fomy'Cx ~ . 

For the tangent space for KV, we consider the module of vector fields tangent to V. 

If I(V) denotes the ideal of germs vanishing on V, then we let 

0 v = {~ ~ 0 t : ~ ( I (V) )  c__ I ( v ) } .  

This is denoted Derlog(V) by Saito [Sa]; however, we use this simpler notation as there is no 

danger of  confusion with other notions. 0 V extends to a sheaf of  vector fields tangent to V, 

f -111 m @V which is easily seen to be coherent [Sa]. If t i/i=t denotes a set of generators for 0V, 

then 

For G = a,  K or KV, we denote the normal space by 

NGe.f 0 = 0(f0)/TGe.f 0 

and the Ge-codimension of f0 is dim cNGe.f 0. 
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The versality theorem allows us to rel~.*e several different approaches to versality 

(Martinet [Mall for A and K [132] or [D1] for KV). For any unfolding f : Cs+q,0 ~ ~t+q,0 

~f 
we let ~jf = ~jj I u= 0 . 

T h e o r e m  (versality theorem) : For G = A, 96 or K V, and an unfolding f o f  f0 the 

following areequivalent:. 

i) f is G-versa/ 

ii) TGe.f o + <~1 f ..... ~qf'p = 0(fo) 
iii) any unfolding fl of f0 winch extends f is a G-trivia~ extension. 

Note: If f: ~s+q,0 ~ ~t+q,0 is G-versal then q >_ Ge-codim(f0), and if they are equal f 

is said to be q-miniversa/. 

Furthermore, f0 is infinitesimally stable if TAe-f o = 0(f0); by Mather [M-IV], if fo 

has rank 0 then an unfolding f of fo is infinitesimally stable when viewed as a germ of a 

mapping if and only if 

T~Tfe'f° + <~ l f  ..... ~qf ' ~-~1 ..... ~ t  > -- 0(f°) " 

Hence, any fo with ~fe-codim(f0) < oo has an unfolding f which is infinitesimally stable. 

Then, any unfolding of f is A-equivalent to f x id. 

E x a m p l e s  f o r  Kv-equ iva l ence  

Example (1.1): 

Let (V,0) c (~4,0), with coordinates (X,Y,Z,W), be defined by y W 2 - Z  2 = 0. Then, 

V=Whitney umbrella x ~ and is parametrized by F(x,y,u) = (x,y2,uy,u). Consider go : ~3'0 

• 4,0 defined by g0(x,y,z) --- (x,y,z, p(x,y)). It can be shown that 0 V is generated by 

' ' ~ z  ' ~ y  ' 0 x  " 

We denote these by {~i}~= 1 . Since 

Cx,Y, z ~ ..... ~ --Cx,Y, z O x ' ~ ' O z ' ~ - W  ' 
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ago ago ago} a a and a ap a then modulo Cx,y,z ax ' ay ' ~zz ' ~ ' -~" ' ~ -  are equal respectively to - ~- a-'-ff ' 

ap a and O. Consequently, rl i o go for i = 1 t o  5 equal, respectively, ~y 3W' 

Hence, 

~ p(x,yo)-OW, b - 2 z ~  a ap a -2y ~W' z~-~, "a---W ' ax" O-W" 

NKV, e'g0 Cx,Y, z {b-~ 3 ago ago = '""a--w } / Cx,Y, z { -~ ..... a z '  r l i°  go} 

ap a 
"~ Cx,Y, z {a~ } / { y ~ ,  p ,  z ,  ~-}.}--~ 

If we pull back F via g0 to form f0(x,y)= (x,y2,yp(x,y2)) 

F 
g3,0 ~ C4,0 

T ? go 

C2,0 fo ~ C3,0 

then Mond computes NAe.f 0 be exactly (1.2) [Mol]. 

Example (1.3) 

Let f0 : ~n,0 ---+ ~,0 be a weighted homogeneous germ defining an isolated 

singularity. Also, let F : gn+q,0 ---+ Igl+q,0 be its versal unfolding, with V=discriminant of 

F. Then, Saito [Sa] gives the following construction for the generators of 0 V. Let {cPi}iq=l be a 

basis for NAe.f 0 and let cp0 = 1. 

F(x,u), u) = (f0(x) + ~.= uiq0 i, u). 

We may assume up to equivalence that F is given by ( 

Let 

q 
F'cPi = j~o aij(u)~pJ mod (0F ..... OF~ 

= ~bx l 3Xn/ 

1] i = -y .~ -7+  _ aij +ai0 ~-  for i > 0  



and 

rl 0 = 

Then, {rli}iq=0 generate 0 v . 

rli ° go = -YN;", for i > 0 or 
"~ i  

NXV,e'g0 
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.Euler vector field (d = wt(f0)). 

Let go : ¢E ~ ¢E l+q be defined by g0(Y) = (Y, 0). Then, 

= y~- for i = 0. Thus, 

- - C y  { ~ ,  ~ .  } / Cy {~-~0 , ~ i .  go} 

~ Cy / my {~.  } 

X ~ • (here q = x(f0) - 1) 
i=l 

n 
Again go pulls back F to give f o : ¢  ,0-~ ¢ ,0 .  

Since fo is weighted homogeneous, fo ~ (~-- 1 ,...,~--~°n). Thus, 

i=l 

Since Ix = ~, these Cy-modules are isomorphic. 

as a @-module. 

Infinitesimal Conditions for Triviality 

Next, the relations we shall establish between .q and Kv-equivalence are most easily 

established at the infinitesimal level. For this reason, we recall the infinitesimal conditions for 
triviality. 

Cs+q+r, ~;t+q+r, 
Let f : q;s+q, 0 ~, ~;t+q, 0 be an unfolding of fo and let fl : 0 ~ 0 

extend f (with local coordinates u for ¢;q and v for ¢;r). 
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Criterion for A-triviality. fl is an A-trivial extension of f if and only if there exist vector 

fields ~i ~ Cx,u,v {~---~}, 8i ~ Cy,u,v {~i  } and ~i E Cu,v {~---~. } such that 

(1.4) ~ t  = -~ i ( f l ) -~ i ( f l )+Siof l__  l < i < r .  
3v i 

Also, if q = 0 and fl  = f0 ,  then fl is an A-trivial unfolding of f0 if and only if 

(1.4) can be solved with ~i - 0. Furthermore, in this case fl is an A-trivial family if and 

{~.} {~-~.} (andagain ~ i -O) .  only if we can choose ~i~ mx'Cx, v ,8 i E my'Cy,v 

This criterion follows from the reduction lemma for A-equivalence in Martinet [Mall. 

The converse follows by differentiating the trivialization with respect to coordinates trivializing 

the unfoldings in the vi-directions. 

Criterion for Kv-triviality: fl is a Kv-trivial extension of f if and only if there are vector 

fields ~i ~ C {~--S~ 5i ~ Cy,u,v{rl i} (where {rl i} generate 0V)and ti e Cu,v{~-~} such x,u,v 0x i J ' 

that (1.4) is satisfied. 

Similarly, if q =0 ,  fl is a Kv-trivial unfolding of f0 if (1.4) can be solved with ~i 

- 0, o ra  Kv-trivial family if (1.4)can be solved with ~i e mxCx,v{~-~. }. This follows for 

~v,-equivalence by the corresponding reduction lemmas in [13I] or [D2]. 

Geometric Criteria for Finite Determinancy 

Finite A-determinacy and finite Kv-determinacy each have geometric 
characterizations. For G = A and ~ by Mather [M-III], and ~ ,  by [D2], finite G- 

determinacy of f0 is equivalent to finite G-codimension of f0" Via this, there is the 

geometric characterization of finite A-determinacy by Gaffney and Mather: f0 is finitely A- 

determined if and only if f0 is infinitesimally stable in a punctured neighbourhood of 0, i.e. 

there is a representative off,  fl  : U ~ C t such that fl is infinitesimally stable on U\{0}. 
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m For finite Kv-determinacy, l e t{  "~i=l be a set of generators of 0 V. By coherence 

they also generate OV,y in a neighbourhood of O. By fo : ~S,o ~ ~t,o being transverse to 

(V,O) at x 0 we shall mean 

df0(x0)(T¢ s) + ( ~  l(f(x0)) ..... Tim(f (x0))> = T¢tf(xo). 

Then, f0 is finitely 9(v-determined if and only if f0 is transverse to V in a punctured 
neighbourhood of 0 (although this characterization was stated in [I32] for finite map germs f0, 

the proof given there works in general). 

~ - e q u i v a l e n c e  and suspension 

Lastly, we relate ~ -equ iva lence  to Kv,-equivalence for V '=  V x ~r. Given fo:  

~S,o ~ ~t,o and g : ct,o ~ ~P,o we let g*fo = g .  fo" For an unfolding f : ~s+q,o -~ ~t+q,o 

of fo, we define g.f(x,u) = ( g .  f(x,u), u) which is an unfolding of g*fo" We consider i : 

~t,o ~ ~t+r,o with i(y) = (y, O) and g : ~t+r,o -~ ~t,o with ~(y,w) = y. We also note g 

induces a Cx-module homomorphism g.:O(f O) -~ O(g.fo), defined by g.(~) = dg(~). 

We say that V,O c ~t,o and VI,O c ~P,o are g-related if for a set of generators 

{ % ' °  "q i=lm of 0 V there are "qi' ~ so that g.(Tli) = 11 i g. For example, V,O c ~t,O and 

V' = V x ~r,o c ~t+r are both i and g related. 

Proposition 1.5: With the preceding notation, let f be an unfolding of  fo and fl an 

extension o f  f. 

V,O c ~t,o and VI,0 c cP,o are g-related; i f  f is a X~-ttivial i) Suppose 

unfolding (respectively family) then g, f  is a 9(., -trivial unfolding (respectively family); 
V l  

also i f  fl is a Kv-trivial extension of  f then g*fl is a K V -trivial extension o f  g,f. 
1 ii) i ,  and ~,  induce isomorphismsofCy (respectivel~ Cy,w)-modules) 

• f ,  f ,  i ,  :NKv,e-f  0 ~ NXv,,ei ,f  0 and n ,  .NXv,,e  0 ~ N~V,e~* 0 

iii) f is XV-versal i f  and only i f  i , f  is ~¢,-versal, 

f' is ~v,-versal i f  and only i f  ~, f  is Kv-Versal. 
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Proof: i) By the infinitesimal criterion we may solve 

~v i 

Applying dg, we obtain 

~i(fl) - ; i(fl)  + 5i ° f l "  

( 1 . 6 )  - ~i (g ° 71) - ~i (g ° 71) + dg (5i ° f l )  

If ~5 i = ~ hijrlj with hij ~ Cx,u,v, then 

dg (8 i) . fl  = ~ hij(dg(rl i) * fl)  = ~ hij'rl' i ° g o fl 

n(i)' n(i)' hi,n," = ° (g° i ' )  with = 2  J 1" 

Substituting into (1.6) satisfies the criterion for triviality for g*fl" The cases of triviality of 

unfoldings or families are similar. 

ii) Suppose V and V 1 are g-related: 

If ; e TKv,e.f0, then ; = ~-It= 0 for f a 1-parameter 2fv-trivial unfolding of f0" 

~(g,?) 
Then, g,(~) = /It I t= 0 ~ TKVl,eg*f0" Thus, g,  induces a map 

g ,  :NXv,e ' f0 ~ NXVl,e-g,f  0.  
It remains to show that this is an isomorphism for g= i and g= n. However, by naturality n ,  o 

i ,  -- ( n °  i),  = id,  = id. If we can show n,  is an isomorphism on normal spaces then so is 

¢t+r,0 i , .  Explicitly if f'0 : t~s,0 ~ has components f'0 -- (f'0,1, f'0,2) then 0V, is 

generated by {rl i} w {~--~.} where {rl i} are a set of generators for OV; hence, 

St° {rli f'0 , ~ } )  NXV,,er0 

Cx { ~ i  } / Cx {~-~} + Cx {rli * f'01} 

-~ NXv,e.n,f '  0 

and the projection is exactly n , .  
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iii) Finally since n ,  and i .  commute with -£7., condition ii) of the versality theorem 
' ~ i  

yields the results. [] 

§2. Relating A and ~¢.equivalence 

In this section we deduce relations between ~fv-equivalence of unfoldings and families 

and A-equivalence for the corresponding unfoldings and families induced via pullback. As a 

consequence we obtain the numerical equality between Ae-codimension and 9fy, e-  

codimension described in the introduction. 

Because the A-equivalence and %y-equivalence are for germs which map between 

different spaces, we slightly change notation from the preceding section. Consider a germ f0 : 

sn,0 ~ ~;P,0 which has finite K-codimension. As mentioned in the preceding section, there is 

an unfolding F : Cn ,0 ~ ~P',0 of f0 which is stable when viewed as a germ. We shall refer, 

to such an unfolding as a stable unfolding of f0" There is an inclusion go" sP,0 ~ ~;P ,0 

given by g0(Y) = (y,0) and go is transverse to F, and f0 may be viewed as being obtained 

by the fiber product, i.e. pull-back of F by go" 

t F 
s n  ,0 ~ ~P ,0 

1" 1" go 

fo • n,0 ~ ~P,0 

Also, given an unfolding g of go we have an induced unfolding f of f0 obtained as the 

fiber product of F and ~. We shall relate the A-equivalence of f0 and its unfoldings with 

the /(y-equivalence of go and its unfoldings. 

By [M2], we may choose a representative of F, again denoted by F : U ~ W such that 

if ~(F) = {x e U : rk df(x) < p'} denotes the critical set of F, then 

1) F-'(O) n ~(F)  = {0) 

2) F I ~(F) is finite to one 

3) F is stable. 

We let D(F) = F(~(F)). If n > p this is the discriminant of F, while if n < p it is the image 

of F. We denote D(F) by V. 
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Remark  2.1: Any unfolding of F is A-equivalent to F x id. If we were to replace F by 
c r  

F × id¢; r then D(F x idcr ) = D(F) x = V', say. By proposition 1.5, 9~v-equivalence for 

go and its unfoldings is equivalent to KV,-equivalence for i .g  0 = i o go : ¢P,0 ---0 ¢P',0 

¢P'+r,0. Thus, it does not matter which stable unfolding of f0 we choose. 

A principal reason for the close relation between A and :Kv-equivalence is the 

characterization of 0 V due to Arnold [A] and Saito [ Sa] (see also Bruce [Br] and Terao IT]). 

Lemma 2.2: With the preceding notation, 

0 V = {rl ~ 0p,: there is a ~ ~ O n, so that ~(F) = rl * F}, 

that is, the set o f  liftable vector fields. 

Proof: The proofs for n _> p are given in the above references. The argument for n < p is the 

same; by Hartogs' theorem 11 lifts if and only if it lifts off a set of codimension 2 in ~n'. 

As F is stable, the only singular points of codimension 1 occur at double points when p -- n 

+ 1. Clearly 11 lifts from the regular points of V. At double points, F is a suspension 

of the germ ~,0 _L_L ~,0 ~ ~2,0 defined by x ~ x, y ~ y in ~2 with image x.y = 0. The 

vector fields tangent to this set are generated by x~- and y ~  and clearly lift. The converse is 

immediate since dF(~) is tangent to Vreg so for any h ~ I(V), ~(h)---0 on Vreg and hence 

by continuity on V. [] 

The first question to resolve is the relation between go being finitely 2fv-determined 

and f0 being finitely a-determined. 

Proposition 2.3 fo is finitely A-determined i f  and only i f  go is finitely 

~v-determinecl. 

Proof: For both directions we use the geometric criterion from the preceding section. 

@ As go is finitely Xv-determined it is transverse to V in a punctured neighbourhood of 

0. Let W be such a punctured neighbourhood with a representative of go still denoted by go" 

Let {rl i} be a set of vector fields in 0 V which generate OV,y , for y' in a neighbourhood of 

0 which includes W (by shrinking W if necessary). For y ~ W, let S -- F'l(g0(y)) n ~(F), 

which is finite. For each i let ~i be a lift of 11 i which, by shrinking U if necessary, is 
P r 

defined on U. Then, F : ¢n ,S -~ C p ,g0(Y) is stable. Pick a subset {rl 1 ..... rl r} of the above 

set {rl.}l such that <rll(g0(y)) ..... rlr(g0(y)) > spans a complementary subspace to 
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dg0(Y)(TtEP). Then, since ~i(F) --- F ,  ~i, by a standard argument in e.g. Martinet [Mall, 
t t t t 

F : cn  ,S 4 cP ,g0(Y) is A-equivalent as a multi-germ to f0 x id : cn  ,S ~ cP ,y. This 

implies that f0 : Ign,s "~ cP,Y is stable (f0 is stable if and only if f0 × id is by the 

infinitesimal criteria of Mather [M-IV]). As y was an arbitrary point of W, f0 is stable in a 

punctured neighbourhood of 0 and so is finitely A-determined. 

Conversely, if f0 is finitely A-detemained then for y in a punctured neighbourhood 

W of 0, f0 : cn , s  ~ cP,Y is stable. Hence, F : cn ' , s  ~ cP',y is an A-trivial unfolding of 

f0" Thus, there are vector fields ~i, Tl'i defined near S and y so that ~i(F) -- rl' i . F and 

{rl'i(y )} span a subspace complementary to cP. Thus, rl' i ~ OV,y.  By choosing W smaller 
I 

if necessary, {rl i} generate OV,y for y e W. Hence, the subspace spanned by {rl i(y)} is 

contained in that spanned by {rli(y)}. Thus, cP is transverse to V at y. Thus, cP is 

transverse to V in the punctured neighbourhood W, i.e. go is transverse to V on W and 

hence is finitely ~Kv-determined. [] 

Second, we relate ~" -triviality of unfoldings of g,~ with A-triviality of unfoldings 
-'V t, p+q+r pÁ+q+r 

of fo" We let g(x,u) be an unfolding of go and gl(x,u,v) : ~; ,0 --, ~; ,0 an 

extension of g. We let f and fl  denote the induced unfoldings of fo" 

P r o p o s i t i o n  2.4: i) I f  g is a ~v-trivial unfolding (respectively ~v-trivial family) 

then f is an A-trivial unfolding (respectively A-trivial family). 

ii) I f  gl isa ~v-trivialextensionof g then fl  isan A-~vialextension of f. 

Proof: We give the proof of ii); that of i) is analogous (and slightly easier). 

By the infinitesimal criterion, there exist germs of vector fields ~i e Cy,u,v ~ i  } '  Xie 

Cy,u,v {hi}, and Yi e Cu, v {~--~.} (with {Tli} generating OV) such that 

(2.s) 
Ov i 

~i([~1) - Yi(gl) + Xi ° gl  • 
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Let {~i } denote the lifts of  the {rl?. If Z i =  Zhij~ j ,  let 5 i =  ~ h ' i f i  j with 

, ,, h"ij CP+q+r; h ij = h ij * (F x id). To define , we note that hij is a germ defined on 

t r  however,  gl  : ¢tr+q+r,0 ~ cP'+q+r,0 is a germ of an immersion. Thus, hij = gl h ij for 
I 

" ' = 'Vh" where also denotes its some h ij on ~P +q+r,0. We also replace Zi by Z i L ijrlj 
,+ 

trivial extension to C p q+r,0. 

t * • 

Xi gl  = X i * g l  Also 

( 2 . 6 )  

Then (2.5) remains valid if we replace Xi by Z i since 

! O 8 i ( F x i d ) = Z i  ( F x i d )  # 

Now, f l  is formed from gl and F × id by fiber product. We  make this explicit. Let 

H 1 : cn'+p+q+r,0 ) c2p'+q+r,0 

be defined by Hl(X',y,u,v) = (F(x'), ~l(Y,U,V), u,v), and 

H : Cn'+p+q,0 ~ c2p '+q,0 

by H(x',y,u) = (F(x'), ~(y,u), u). Let, 
P 

A 1 = {(y',y',u,v) : y' E C p }, 

A = {(y',y',u) : y' e C p'} . 

Then, f l  and f are the restrictions of  H 1 and H 

H 1:  HI-I(A 1) ) A 1 H :  H-I(A) ) A .  

We  wish to prove that H 1 I HI-I(A1) is an .~-trivial extension of  H [ H-1(A). 

Wecla im 

aq t 
by i 

( 2 . 7 )  

for on the first component 

(0, ~-~i ) = - (Si,~i) H 1 - Yi(Hl) + (X'i,)(i) * HI 

0 = - S i ( F x i d ) - 0 + Z ' i o ( F × i d ) ,  

and on the second component 

~'i = - ~i(gl) - Yi(gl) + Z'i ° gl 

which follow by (2.5) and (2.6). Also, 

is tangent to A1; and if we let 

3 
+ Yi + (X'i,Z'i) 
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gi = ~ii + Yi + (Si,~i) 

then 

~ i ( S l )  = H1 oHi .  

Thus, {i is tangent to HI-I(A1). Then, the restrictions ~i I A and ~i I HI'1(A l) give the 

vector fields which provide the infinitesimal trivialization of H 1 I HI'I(A1) as an extension of 

H [ H4(A). t2 

Now we are in a position to establish the equality of codimensions before we even 

define the algebraic homomorphism between normal spaces. It is enough to show: 1) if g is a 

X.V-versal unfolding of go then the induced f is an A-versal unfolding of g and 2) there is 

an A-miniversal unfolding f of f0 induced by an unfolding g with g XV-versal. For by 

the versality theorem, 1) implies Ae-codim(f0) _< XV,e-codim(g0) while 2) implies the 

reverseinequality. 

Then, 1) is established by 

L e m m a  2.8: Let g be a XW-versal unfolding of  go, then f is an A-versal 

unfolding of  fo" 

Proof: Let fl  be an extension of f. To prove that f is A-versal, it is sufficient to prove that 

any such fl  is an A-trivial extension of f. If we can show that fl is induced by a gl 

which is an extension of g, then, by the KV-versality of g, gl is a Xv-trivial extension of 

g; and by proposition 1.5, fl  is an A-trivial extension of f. We actually prove a variant of 

this where go' g and gl are replaced by related germs h0, h and h l, which induce f0' f and fl  

from a larger stable unfolding so we can still apply proposition 1.5. 

To define the h's, we enlarge the stable unfolding F to include explicitly all of the 

unfoldings under consideration. We represent F as an unfolding F(x,w) = (F(x,w), w). The 

unfolding g(y,u) = (~(y,u),u), ~: •P+q,0 ---* cP',0 has the form (y,w) = ~(y,u) = (~'(y,u), 
e 

~"(y,u)). Define a map q~ : ~;P +q,0 --* C p +q,0 by q)(y,w,u) = (~'(y,u), ~"(y,u) + w, u). It 

is easily checked that qo is a germ of a diffeomorphism, so that F × id pulls back via q0 to an 

unfolding 

Fl(X,U,W) 

and that 

Fl(X,U,0) = f(x,u) 
Consider the unfolding 

Then 

-- (Fl(x,u,w),  u, w) 

and Fl(X,0,w) -- F(x,w). 

F2(x,u,w,v) = (Fl(X,U,W) - f(x,u) + f l (x ,u ,v ) ,  u,w,v).  
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(2 .9)  F2(x,u,0,v) = (fl(x,u,v), u,0,v) and F2(x,0,w,0) -- (F(x,w), 0,w,0) 

Since F is stable, by (2.9) and the infinitesimal criterion of Mather, F 2 is stable. Then, we 

define h0:~P,0 ~ ~P'+q+r,0, h: ¢P+q,0---¢ ~P'+q+r,0, and lal: ~P+q+r,0 ~ ¢P'+q+r,0 by 

h0(Y) = (y,0,0,0), h(y,u) = (y,u,0,0), and hl(Y,U,V) = (y,u,0,v). By (2.9) we see that la pulis 

back F 2 to give f, la 1 pulls back F 2 to give fl  and h 1 is an extension of h. If we knew that 

h 1 were a XV,,-trivial extension of h, where V" = D(F2), then by proposition 1.5 we could 

draw the desired conclusion. 

To see that it is, we define GO: cP,0 ---, cP'+q+r,0 by G0(Y) = (y, 0, 0) and the 

unfolding G(y,u) = (G(y,u), u) by G(y,u) = (~(y,u),u,0). Then, go = x 'G0  and ~ = x . G  

for 7t: ~P'+q+r,0 ---¢ CP',0 the projection. Thus, by proposition 1.5, G is a X~c,-versal 

unfolding of G O where V' = V × C q+r. Also, (¢p × id).h = G , (q) × id).h 0 = G 0, and 

¢p x id(V")--- D(F x id) -- V'. Since q) x id is a diffeomorphism, h is a XV,,-versal unfolding 

of h 0 if and only if G is a XN,-versal unfolding of G 0, which it is. Hence, h 1 is a 

Kv,,-trivial extension of h ; and thus, f! is an A-trivial extension of f. n 

For 2) we let f(x,u) --- (f(x,u), u) denote an A-versal unfolding of f0 with 

f : CP+q,0 ~ cn+q,0.  We define an unfolding of g0(Y) = Y by ~(y,u) -- (y,u). 

Lemma 2.10: g is a Kv-versal unfolding of go, where V = D(f).  

Proof: Since 

TXe.f 0+< ~ , ,@ > D T.~.f 0 - 

it follows that the A-versal unfolding f is also a stable unfolding of f0" Theta, we may use f 

for our stable unfolding F. 

Let gl  be an extension of g, with additional parameters v E Er. Define 

¢p : EP+q+r,0 ~ EP+q+r,0 by (p(y,u,v) = (~l(Y,U,V), v). As gl is an extension of g, 

~l(Y,U,0) = (y,u). Hence, (p is a germ of a diffeomorphism by the inverse function theorem. 

We may pull back f × id by q) to obtain an unfolding f l  : cn+q+r,0 ~ EP+q+r,0 • Since 

(p(y,u,0) = (y,u,0) , fl(x,u,0) = f(x,u) . Note even though f l  is a pull-back of a trivial 

unfolding f × id, the pull-back is not in the usual sense of unfoldings; hence, the unfolding 

need not be an A-trivial extension f. However, f l  is an extension of the unfolding f which is 

A-versal. Hence, f l  is an A-trivial extension of f by the versality theorem. 
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By the infinitesimal criterion, there exist vector fields of the form 

+~i  ~i-'- ~ + ~ i +  ~i l < i < r  Zi = ~ + "Yi ~-i  - - 

where Yi ~ Cy,u,v {-~i } , ~i E Cx,u,v { ~-~j } , ~iE Cu,v { ~.~j } 

8i(fl) = Zi ° f l .  
Thus, Zi is fl-liftable and 

and such that 

b 

Consider the unfoldings h and h 1 of ho(Y) = (y,O,O) with la(y,u) = (y,u,O) and hl(Y,U,V) -- 

(y,u,v). 

z i* la l  = Zi, ~i(hl) = ~i, Yi(~al) = Yi, and ~v i bY i 

Hence, 

= - q(i(hl) - ~i(lal) + Z i .  la I l < i < r .  
bv i 

Hence, h 1 is a Kv,-trivial extension of h where V '=  D( f l ) .  

Now, cp(D(fl)) = D(f) × •r = V × ~r and ~0(y,u,0) = (y,u,0). Thus, ~0,h 1 is a 

~vx~r  trivial extension of ~0,h by proposition 1.5 and hence gl = n.cP.hl is a ~/fv-trivial 

extension of g = ~.~0,h. As gl was an arbitrary extension of g, g is ~KV-versal. [] 

Now, if g is a Kv-miniversal unfolding of go on q parameters, then the induced f is 

an A-versal unfolding of f0 by lemma 2.8. Thus, by the versality theorem, 

Kv,e-c°dim (go) = q > Ae-c°dim (f0)" On the other hand, if f is an Ae-miniversal 

unfolding of f0, then the unfolding of go defined in lemma 2.10 is Kv-versal so the 

inequality is reversed. We conclude, 

Theorem 1: With the preceding notation 
Ae-c°dim frO) = KV,e-c°dim (go)" 
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§3. Isomorphism of Normal Spaces 

As in the preceding section, we let f0 : Cn'0 ~ cP,0 have a stable unfolding 
n' ' F : C ,0 ~ ¢P ,0 with go : cP,0 ~ ¢P ,0 denoting the inclusion of ¢ P .  By a choice o f  

local coordinates we may assume F(x,u) = (F(x,u),u) -- (y,u) and g0(y) = (y, 0). 

In this section we shall define an isomorphism between N~v,e .g  0 and NAe.f 0 when 

both (i.e. either) are finite dimensional. For ~ e 0(g0), we may represent ~ -- (~1' ~2 ) 

where ~1 denotes the y-component and ~2 the u-component of ~. We define a Cy-linear 

homomorphism O:0(g0)  ~ 0(f0) by 

¢(~) = - ~l°f0 + duF(X'0) (~2) ° f0 

Theorem 2: • induces an isomorphism of Cy-modules 

6 :  N~v,e .g  0 ~ , NAe-f 0 

Proof: The proof of this theorem will occupy the rest of this section. 

Given a 1-parameter unfolding of go '  which we denote by gt(y) instead of ~(y,t), 

we can associate to it an element of 0(g 0) , namely ~ = ~--~gtlt= 0 . We shall explicitly show 

that ~(~) is the corresponding element of 0(f 0) obtained from the induced deformation ft of 

f0 which is defined as a fiber product 

pr ~ cp  

Then, 

(3.1) ft : Xt = {(x,u,y) : F(x,u) = gt(y)} 

with pr(x,u,y) -- y .  

We write gt(y ) = (glt(Y), g2t(Y)) = (y,u) so that gl0(Y) -- y ,  g20(Y) - 0 .  
(3.1) defines X t by 

F(x,u) = glt(Y) and u-- g2t(Y); 
or x and y are related by 

(3.2) glt(Y) - F(x, g2t(Y)) = 0 .  

Let H(x,y,t) denote the function on the left hand side of (3.2). We apply the implicit 
-1 

function theorem to parametrize H (0). 

(3.3) dyH(0,0,0) = d y g l 0 ( 0 ) -  duF(0,0)odg20(0). 

Since g l0  "- id and g20 - 0 ,  we see from (3.3) that dyH(0,0,0) = I .  Thus, by the 

implicit function theorem, we may represent H-1(0) as the graph of y as a function of (x,t), 

y = ~gt(x). 
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Then, X t = {(x,u,y) : u = g2t(Y) , y = ~t(x)} . Let t0t(x ) = g2to~tt(x) so that 

to0(x) --- g20oRS0(x) = 0 .  Also, g l 0  = id so for small t ,  g l t  is a germ of  a diffeomorphism. 

Hence, by (3.2) 

y = g l t  "1 . F(x, g2t(Y)). 

Thus, by the above description of  X t and (3.1), 

y = ~t(x) = g l t  -~ . F(x, tot(x)) 

and so 

(3.4) ft(x) = g l t  -~ . F(x, tot(x)). 

Thus, by the chain rule 

~ft ~)gl~ I + d g l o  1 ~-F ~tot 
(3.5) ~ ' l t = 0  = at t=0 * F(x'90(x)) *-~--(x'to0(x)) -~-'[t=0" 

(3.6) 

-1 
From g l t  * g l t  -- id we obtain 

-1 

at I t = 0 . g l 0 + d g  1 I t=0= 0 .  

Since g l 0 - - i d ,  (3.6) implies 

-1 

 't=0 = 
Also, to0(x)= 0 and F(x ,0)= f0(x) so (3.5) becomes 

~gf t ~gglt 0F ~'Pt 
(3.7) --&--It= 0 = at It= 0 . f0(x) + -~--(x,0) --~-It= 0 . 

Then, 

Hence 

~k~0 t 
(3 .8 )  at It= 0 = 

tot --- g2t ° ~ t '  or 

- 1 .  F(x, tot(x)) tot (x) = g2t * g l t  

~)g2t - 1 
at It= 0 * g l0  * F(x'to0(x)) + dg20 * ( -- ) " 

Since g 2 0 '  and hence dg20 ,  equals 0 ,  the second term vanishes. Thus, (3 .8)becomes 

at It= 0 -- It= 0 * f0 (x)" 
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Substituting into (3.7) yields 

(3.9) 

If 

= _ ~ (Og2t x 
~--~tlt= 0 It= 0 * fo(X) + duF(X,O) k ~ l t = O )  * fo(X) • 

_ _  ( ~glt , ~ t  = 
; =  ~ 3grIt= 0 -  k T I t : 0  It: 0 ) ( ;1 ' ;2 )  

then, we obtain from (3.9) 

~gf t 
(3.10) -~--It= 0 = - ; l ' f 0  + duF(X'0) (42) * f0" 

We see that ¢P(~) is equal to the right hand side of (3.10): 

¢ : O(g O) ~ O(f O) 
(3.11) 

¢(~) = - ~l*fO + duF(X'0) (~2) * fo 

~gt 
Next, if ~ ~ TKV,e-g0, then ~ = "~--[t=0 for gt a 

proposition 2.4, ft is an A-trivial deformation of f0" Thus, 

ThUS, 

Kv-trivial deformation. By 

~ft TAe.f0 " • (~) = --~-It= 0 

q)(TffN,e.go) c TAe.f 0 
and induces a @-module homomorphism. 

(3.12) ~ :  NKV,e.g 0 , NAe.f 0 . 

We now show this is an isomorphism. 

~ft 
Given ~ E e(f0) , then ~ = ~ [ t=O with ft induced, up to A-equivalence, by an 

unfolding gt" Thus, gt induces f't with ft A-equivalent to f ' t '  say ft = vtof'to~°t with VO = 

id, CPO = id. We compute 
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Thus, 

oft  _ ae'  I 
'~- I t :0  - & t=0 + ~ It=0 o f'0 - df'0 ( ~ - I t :  0) 

of' 
22 I 

- at t=0 + rl°f0 - ~ ( f 0 )  " 

= -~-It: 0 = (I)(¢) mod TAe.f 0 . 

Hence, (~ is surjective. 

By Theorem 1, the spaces in (3.12) have the same dimension as vector spaces; as (~ is 

surjective it is an isomorphism. [] 

We can now refine our earlier results relating the versality of go and f0" 

Corol lary 1: With the preceding notation, let g be an unfolding of go and let f denote the 

induced unfolding of fo" Then, f is A- versal i f  and only i f  g is YW- versal. 

Proof: The proof of the theorem shows that for each i, 

ag of 
: 

Hence,the corollary follows by the versality theorem and theorem 2. [] 

We also obtain the analog of theorem 2 for multi-germs, which follows by the same 

proofs except applied to multi-germs. 
n '  Let f0", •n'S "') ~P,0 have a stable unfolding F : q~ ,S ~ e P , o  with 

go : ~P,0---+ ~P ,0 denoting the inclusion of ¢~P. Then, (P defined by (3.11) also defines a 

homomorphism for 0(f0) denoting the module of vector fields along the multi-germ f0" Then, 

(I) also induces an isomorphism in this case. 

T h e o r e m  3: i) The multi-germ f0 has finite A-codimension f f  and only i f  go has finite 

Tw-codimension; 

ii) in the case of i ) •  induces an isomorphism 

t~:  N~v,,e.g 0 ~ , NAe.fO. 
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§4 Several Consequences 

We deduce consequences of the main theorems for: a) placing Mond's formula in a 

more general context as an analogue of Milnor's formula but for nonlinear sections of 

nonisolated hypersurface singularities and b) verifying that a method for computing the 

versality discriminant of an unfolding of a hypersurface singularity (given in [DG] for the Pham 

example) is valid in general. 

Nonlinear Sections of Hypersurface Singularities 
Let V,0 c t~m,0 be a hypersurface germ and let go : ~P,0 ~ ~m,0 be a germ 

of an immersion. We can define two numbers associated to the nonlinear section go' a number 

defined algebraically, which measures the codimension of go' and a number defined 

geometrically, which is the analogue of the Milnor number for gt(~P)n V with gt a 

perturbation of go" If we ask when these two numbers are equal, it turns out that not only can 

Mond's formula be interpreted as an equality of these numbers but, in this context, it is related 

to other formulas which involve seemingly unrelated numbers such as the multiplicity of the 

discriminant for a versai deformation and a special case of Greuel's and L~'s formula for the 

Milnor number of isolated complete intersection singularities [G], iLL 

The algebraically defined number associated to go is its Xv-Codimension 

Valg(g 0) = XV,e-codim(g0) 
For this number to be finite we must assume that go is transverse to V in a punctured 

neighborhood of 0. For the geometrically defined number, we consider a one-parameter family 

of germs gt such that gt is transverse to V for t # 0. Here we have to use a weaker notion of 

transversality than that used in § 1, i.e. we choose a Whitney stratification of V with the 

property that all r I ~ 0 V are tangent to the strata and require transversality to all of  the strata. 

Then the geometric number which is the analogue of the Milnor number is 

Vgeom(g 0) = I X(gt(¢ p) n V n Be ) - 1 I. 

Here X(gt(*P) n V n Be ) is the topological Euler characteristic, B e is a ball about 0 of radius 

e and c and t have to chosen appropriately small. This geometric number can be shown to be 

well-defined. Mond's formula and other related formulas suggest the following. 

BASIC QUESTION : Suppose both V and go are weighted homogeneous for the same 

weights on •m. When do we have the analogue of Milnor's formula, namely, when does (4.1) 

hold? 



115 

(4 .1)  Valg(g O) = Vgeom(g O) 

We consider some cases where it is presently known to hold. 

1) Let V = D(F) = image(F) where F: ~n,0 ~ t~n+l,0 is a stable germ, and let 

go: ¢3'0 ~ cn+l ,0  denote a germ of an immersion transverse to F with f0 the pullback. 

By theorem 2 

.~e-codim(f0) = KV,e-codim(g0) -- Valg(g0). 

If gt is a family such that gt(~ 3) is transverse to V for t # 0, then by the proof of proposition 

2.3, the pull-back family ft is stable for t ~ 0. Then ft(C 2) n Be = gt(¢ 3) n V n Be. Thus, 

Vgeom(g 0) = I ~ (ft(C 2) n Be) - 11. Thus, by the result of de Jong and van Straten [JS], 

(4.1) holds when go and F are weighted homogeneous for the same weights on C n+l. 

2) Let V = D(F) where F: ~n+q,0 ~ ~l+q,0 is a versal unfolding of a weighted 

homogeneous hypersurface singularity defined by f0 (here q = x - 1). Also, let go: C,0 

el+q,0 denote the germ g0(y) = (y,0). Then, go is transverse to F with f0 the pullback. We 

saw in example 1.3 that 

ae-codim(f 0) = ~.V,e-codim(g0) (= Valg(g0)) = x -1  

If gt is transverse to V for t small # 0 then gt(~) n V n Be consists of re(V) points, 

where m(V) denotes the multiplicity of V. However, m(V) = Ix ; see e.g. [ T]. Hence, 

Vgeom(g0) = IX - 1. Since f0 is weighted homogeneous, Ix = x so again we have equality in 
(1.4). 

3) Let V -- D(F) = image(F) where F: ~n,0 ~ C n+l,0 is the stable unfolding of the germ 

f0(x) = (xn,x m) with (n,m) = 1. Likewise, let go: t~2,0 ~ ~n+l,0 denote the germ of an 

immersion g0(Yl,Y2) = (yl,Y2,0) transverse to F with f0 the pullback. Then, a simple 

calculation shows that .¢ie-codim(f0) = 8(6") where Cis  the image curve f0(~) defined by 

yl  m - y2 n -- 0. Also, f0 can be deformed to a stable germ ft so that the image curve ft(~) has 

8(C) double points and ft(~) n B e = gt(¢ 2) n V n  Be for gt the deformation of go inducing 

ft" Hence, 

Vgeom(g 0) = I z ( f t ( ¢ ) n B e ) - l l  = I ( 1 - ~ ) - 1 1  --~(C). 

Lastly we consider a hypersurface which is not the discriminant of a stable germ. 
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4) Let V,0 be an isolated hypersurface singularity defined by a weighted homogeneous germ 

f 0 : c n , 0  ~ C,0. Let go: c n - l , 0  ~ tgn,0 be a germ of an immersion which is 

weighted homogeneous for the same weights and for which go ( C n-  1) is transverse to V in a 

punctured neighbourhood of 0. By a weighted homogeneous change of coordinates we may 

assume that go is a linear embedding g0(xl . . . . .  Xn_l) = (x 1 . . . . .  Xn_l,0). Now, 0 V is 

aroa 
generated by {~ij - ~x i ~ ~xi ~ i  ' e} where e is the Euler vector field. Thus, 

{ ~ . }  ~ , n-l} Cx' {~ij' e} N~fV'e'go = Cx' / (Cx' { ~ i '  j :  1 .... + 

{ ~ }  J "af°- ~-~-- n- l}  = Cx, / (Cx, taxi a ,J= 1 . . . . .  

n-I 
(since e .  go = .= J" 0xj ) 

Therefore, 

= Cx,/(~--°ilxn=O,j= 1 ..... n- l ) .  

Kv.e_COdim(go) = ~t(f01 ~n- l ) .  

On the other hand, the assumption of transversality of ~n-  1 to V off of 0 implies that h = 

(Xn,f0) : cgn,0 ~ C2,0 defines an isolated weighted homogeneous complete intersection 

singularity. For gt(x') = (x', 0, gt(g n - l )  is transverse to V for small t # 0. Thus, h-l(0,t) = 
gt(~ n - l )  n V is a Milnor fiber of h so that Vgeom(g0) = p.(h) -- B(f0 l C n - l )  (e.g. by a result 

of Greuel and L~, [G] ILl, = dirncJ(h ), where ~h)  is the Jacobian algebra of h, and by direct 

computation, 

J(h) = cx/(~-~ I. xn=O,j= 1 ..... n- l )) .  

Again (1.4) holds. 
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Versality Discriminant 

Let f0 : cn,0 ~ ¢,0 be a weighted homogeneous isolated hypersurface singularity. We can 

assign weights to 0(f0) via wt(~.) = -wt(xi) and this induces weights on NAe.f 0 = N~}'e.f 0 

( ~+ is the usual action of R together with • acting by translation on C). We let NAe.f0(<m ) 

denote the terms of weight < m. For a given m, let {gi}iq 1 be a basis for N~te.f0(<m ) and 

consider the unfolding 

q 

F(x,u) = (F(x,u), u) = (f0(x) + ~ ui9 i, u) 
i=t 

The versality discriminant for F consists of z = (y,u) ~ ~l+q such that if 

S = F-l(y,u)C~ E(F) (recall ElF) is the critical set of F) then F : en+q,s ~ ¢l+q,z is not 

infinitesimally stable. Understanding the versality discriminant of F is a basic step in 

understanding the structure of F and determining whether, e.g., it is topologically versal. 

In [13(3] a procedure was given for computing the versality discriminant for the Pham 

example. We show here that this procedure works for all such unfoldings described above. Let 

{CPi}ir=l be a basis for NAe.fO(~a ). Also, let 

e = 

n , 
d.y .~  - '= with aj = wt(xj) and d = wt(y). 

T h e n ,  

n 

e(]~ ) def  d.F.--~ - ~ aix i. ~ 
j = t  ° " ~xj 

- ~ wt(uj).uj.tpj 

Since {9i, ffj} is a basis for NRe.f 0, by the preparation theorem we may write 

r 

tPi'e(F) = j~lhij(u)'~0j + j_~lgij(u)'tPj m°d(~- T ..... 

(4 .2)  

t~i.e~ ) = h,ij(u).tp j + g,ij(u).t~ j mod(OV, .,~F~ 
• = "= ~o~ I "" O~Xn ! 
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Let H be the (x-l)  x r matrix with entries 

H = (gij(u) I y.Sij - g'ij(u)) 

q × r  r x r  

Let W be the variety defined by the vanishing of the r x r minors of H. For the Pham 

example [DG], it is shown that this yields the versality discriminant. This is in fact true in 

general: 

Proposition 4.3: W is the versality discriminant of F. 

Proof: The proof is a consequence of the proof of proposition 2.3 together with the construction 

due to Saito [S] of the generators of 0 V for V = D(F 1) with F 1 the versal unfolding of f0 (see 

example 1.3) 

FI(x,u.v ) = (f0(x) + ui-q0 i + vj-~j, u, v) 

By the proof of of proposition 2.3, (y,u) ~ q2 l+q c q;l+q+r belongs to W exactly if ¢;l+q 

fails to be transverse to V -- D(F1) at (y,u,0). Recall that transversality holds at (y,u) if 

(4.4) I~ l+q ¢;l+q+r 
+ <rl0(y,u ) . . . . .  rlx_l(y,u)> = 

where {'qi } denote the set of generators for 0 V constructed by Saito. However, note that (4.2) 

implies 

(4 .5 )  

q I" 

d'F'~i'-~ = j=~thij(u)'q0j + j~tgij(u)'~j mod ~-~-- ~.___~ 
"= ~ x  1 .. . . .  ~Xn] 

¼ d.F.t~ i. = h'ij(u).tpj + g'ij(u)-~j mod(OV, .  , ~ /  
j=i j=i ~x i "" 8xn/ 

It follows from Saito's construction (1.3) and (4.5) that 
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rlk = (Y-hkk).~ + ~hkj(U).~--] + ~ gkj(U).~, l < k < q  
k j#k ~ j=  1 • 

q 

rlq+k = (Y-g'kk)'~ + j~t hkj(U)'~ + ' =  j~kZ gkj(U)'~-~ l < k < r  

togetherwith 

a .uj. j__~t cj-vj-~j -- d.y.~- - + Tl0 

are gcncrators for V. Hence, (4.4) holds exactly when thc v-components of the vectors 

Tlil ~1+q span C r. These components givc (up to signs in columns) exactly the matrix H (since 

n0 [ C 1+q has v-componcnt = 0). Thus, (4.4) fails exactly when the rank of H < r. [] 

A Arnold, V. I. 

B Bruce, J.W. 

D1 Damon, J. 

D2 

DG Damon, J. and 

DP du Plessis, A. 
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