\mathcal{A} - equivalence and the Equivalence of Sections of Images and Discriminants

James Damon*

In [Mo2] and [MM] Mond and Marar obtain a formula relating the \mathcal{A}_{e}-codimension of map germs $f_{0}: \mathbb{C}^{2}, 0 \longrightarrow \mathbb{C}^{3}, 0$ to the Euler characteristic of the image of a stable perturbation f_{t} of f_{0}. This has been proven to hold quite generally for such map germs by de Jong and Pellikaan (unpublished) and by de Jong and van Straten [JS]. One curious aspect of this formula is the presence of the \mathcal{A}_{e} - codimension, which seems to have little relation with the image of f_{t}. This codimension is related by de Jong and van Straten to the dimension of the space of deformations of $X=\operatorname{Image}\left(f_{0}\right)$ for which the singular set of X deforms flatly. Their arguments depend strongly upon X being a surface singularity in \mathbb{C}^{3}.

In this paper, we derive another relation between \mathcal{A} - equivalence and properties of image $\left(f_{0}\right)$. This relation is valid for all dimensions and directly relates the \mathcal{A}_{e}-codimension of f_{0} with a codimension of a germ defining Image $\left(f_{0}\right)$ as a section of the image of a stable germ.

We recall that by Mather [M-IV], if $f_{0}: \mathbb{C}^{\mathbf{n}}, 0 \longrightarrow \mathbb{C}^{\mathrm{p}}, 0$ is a holomorphic germ of finite singularity type (i.e. finite contact codimension) then there is a stable germ $\mathrm{F}: \mathbb{C}^{\mathrm{n}^{\prime}}, 0 \longrightarrow \mathbb{C}^{\mathbf{p}^{\prime}, 0}$ and a germ of an immersion $\mathrm{g}_{0}: \mathbb{C}^{\mathrm{p}}, 0 \longrightarrow \mathbb{C}^{\mathfrak{p}^{\prime}}, 0$ with g_{0} transverse to F such that f_{0} is obtained as a pull-back in diagram 1 (F is the stable unfolding of f_{0} (M-IV]).

The germ g_{0} has been used to determine \mathcal{A}-determinacy properties of f_{0} by Martinet [Ma2] and topological determinacy properties by du Plessis [DP]. However, there was lacking a precise relation between equivalence for the germ g_{0} and the \mathcal{A} - equivalence of f_{0}. In this paper we derive such a relation.

Let $V=D(F)$ denote the discriminant of F (which is also Image (F) when $n^{\prime}<p^{\prime}$). Given a variety-germ $\mathrm{V}, 0 \subset \mathbb{C}^{\mathrm{p}^{\prime}, 0}$ there is a notion of "contact equivalence preserving V " on

[^0]germs $h: \mathbb{C}^{\mathrm{m}}, 0 \longrightarrow \mathbb{C}^{\mathrm{p}^{\prime}}, 0$, defined by the action of a group \mathcal{K}_{V} [D2].
The main results here concern the relation between X_{V} - equivalence for g_{0} and \mathcal{A} - equivalence for f_{0}. They are:

1) g_{0} has finite \mathcal{K}_{V} - codimension if and only if f_{0} has finite \mathcal{A}-codimension;
2) if we denote the extended tangent spaces to the \mathcal{A} - orbit of f_{0} and the \mathcal{K}_{V} - orbit of g_{0} by $\mathrm{T} \mathscr{A}_{\mathrm{e}} \cdot \mathrm{f}_{0}$ and $\mathrm{T} \mathcal{K}_{V, \mathrm{e}} \cdot \mathrm{g}_{0}$, with associated normal spaces

$$
\mathrm{N} \mathscr{A}_{\mathrm{e}} \cdot \mathrm{f}_{0}=\theta\left(\mathrm{f}_{0}\right) / \mathrm{T} \mathcal{A}_{\mathrm{e}} \cdot \mathrm{f}_{0} \quad \text { and } \quad \mathrm{N} \mathcal{K}_{V, \mathrm{e}} \cdot \mathrm{~g}_{0}=\theta\left(\mathrm{g}_{0}\right) / \mathrm{T} \mathcal{K}_{V, \mathrm{e}} \cdot \mathrm{~g}_{0}
$$

then these normal spaces are isomorphic as $\mathcal{O}_{\mathbb{C}^{\mathbb{P}}, 0}$-modules (theorem 2);
3) taking dimensions in (2) we obtain (theorem 1)

$$
\mathcal{A}_{\mathrm{e}} \text {-codimension }\left(\mathrm{f}_{0}\right)=\mathcal{K}_{V, \mathrm{e}} \text {-codimension }\left(\mathrm{g}_{0}\right)
$$

4) if we replace the germ f_{0} and the stable germ F by multi-germs $f_{0}: \mathbb{C}^{n}, S \longrightarrow \mathbb{C}^{p}, 0$ and $F: \mathbb{C}^{\mathrm{n}^{\prime}}, S \longrightarrow \mathbb{C}^{\mathrm{p}^{\prime}}, 0$ with f_{0} finitely determined and F stable then 1) - 3) remain valid (see theorem 3; however, to keep notation simple we give the proofs for the case where $|S|=1$ and observe that they work for all finite S).

The third result allows us to place the Mond-Marar formula into a common context with other formulas which relate the algebraic codimension of (nonlinear) sections of varieties to Euler characteristics of their perturbations.

As corollaries of these results and their proofs we obtain: i) sufficient conditions for unfoldings of f_{0} to be \mathcal{A} - trivial in terms of the corresponding unfoldings of g_{0} being $K_{V^{-}}$ trivial (but it is unknown whether the converse holds); ii) a proof that unfoldings of f_{0} are \mathcal{A} versal if and only if the corresponding unfoldings of g_{0} are K_{V} - versal and iii) a characterization of the versality discriminant as the set of points where g_{0} fails to be transverse to V and an explicit method for computing the versality discriminant for unfoldings of hypersurfaces.

The author is especially grateful to the organizers of the special year in bifurcation and singularity theory at the University of Warwick for their generous hospitality and support.

$\S 1 \mathcal{A}$ and \mathcal{K}_{V}-equivalence

Here we recall several basic properties of \mathcal{A} and \mathcal{K}_{V}-equivalence; while those of \mathscr{A}-equivalence are generally well-known, those of \mathscr{K}_{V}-equivalence are less so. The key properties of these groups which we are interested in are: their tangent spaces and infinitesimal conditions for versality, infinitesimal conditions for triviality of unfoldings, and geometric characterizationsoffinitedeterminacy.

All germs which we consider will be holomorphic. The two principal notions of equivalence for map germs are \mathcal{A} and \mathcal{K}-equivalence. We denote the space of holomorphic germs $f_{0}: \mathbb{C}^{\mathbb{s}}, 0 \rightarrow \mathbb{C}^{t}, 0$ by $c_{s, t}$ and use local coordinates x for \mathbb{C}^{s} and y for \mathbb{C}^{t}. With \mathcal{D}_{n} denoting the group of germs of diffeomorphisms $\varphi: \mathbb{C}^{n}, 0 \rightarrow \mathbb{C}^{n}, 0$, the group $\mathcal{A}=\mathcal{D}_{\mathrm{S}} \times \mathcal{D}_{\mathrm{t}}$ acts on $C_{\mathrm{S}, \mathrm{t}}$ by $(\varphi, \psi) \cdot \mathrm{f}_{0}=\psi \circ \mathrm{f}_{0} \circ \varphi^{-1}$. The group \mathcal{K} (contact equivalence) consists of $\mathrm{H} \in \mathcal{D}_{\mathrm{S}+\mathrm{t}}$ such that there is an $\mathrm{h} \in \mathcal{D}_{\mathrm{S}}$ so that $\mathrm{H} \circ \mathrm{i}=\mathrm{i} \circ \mathrm{h}$ and $\pi \circ \mathrm{H}=\mathrm{h} \circ \pi$, where $\mathrm{i}(\mathrm{x})=$ $(x, 0)$ is the inclusion $i: \mathbb{C}^{s} \hookrightarrow \mathbb{C}^{s+t}$ and $\pi(x, y)=x$ is the projection $\pi: \mathbb{C}^{s+t} \rightarrow \mathbb{C}^{s}$. Then, \mathcal{K} acts on $\mathcal{C}_{\mathrm{S}, \mathrm{t}}$ by

$$
(h(x), H \cdot f(x))=H(x, f(x))
$$

i.e. $\operatorname{graph}(H \cdot f)=H(\operatorname{graph}(f))$. Germs are \mathcal{A} or \mathcal{K}-equivalent if they lie in common orbits of the group actions.

An unfolding of f_{0} is a germ $f: \mathbb{C}^{s+q}, 0 \rightarrow \mathbb{C}^{t+q}, 0$ of the form $\left.f(x, u)=\overline{(f}(x, u), u\right)$ with $\bar{f}(x, 0)=f_{0}(x)$ (here u denotes local coordinates for $\left.\mathbb{C}^{q}, 0\right)$. Both \mathcal{A} and \mathcal{K} extend to actions on unfoldings: if $\varphi \in \mathcal{D}_{\mathrm{S}+\mathrm{q}}$ and $\psi \in \mathcal{D}_{\mathrm{t}+\mathrm{q}}$ are unfoldings then $(\varphi, \psi) \cdot \mathrm{f}=\psi \circ \mathrm{f} \circ \varphi^{-1}$
 $\pi^{\prime} \circ \mathrm{H}=\mathrm{h} \circ \pi^{\prime}$ (and i^{\prime} and π^{\prime} are inclusions and projections for $\mathbb{C}^{\mathrm{s}+\mathrm{q}}$ and $\mathbb{C}^{\mathrm{s}+\mathrm{t}+\mathrm{q}}$). Then

$$
(\bar{h}(x, u), H \cdot f(x, u))=H(x, \bar{f}(x, u), u)
$$

If $(V, 0) \subset \mathbb{C}^{\mathfrak{t}}, 0$ is a germ of a variety then we can define a subgroup of \mathcal{K}

$$
\mathbb{K}_{V}=\left\{H \in \mathcal{K}: H\left(\mathbb{C}^{s} \times V\right) \subseteq \mathbb{C}^{s} \times V\right\}
$$

and similarly for unfoldings. This yields \mathcal{K}_{V}-equivalence. Just as \mathcal{K}-equivalence captures the equivalence of the germs of varieties $f_{0}{ }^{-1}(0)$, so too K_{V}-equivalence captures the equivalence of the germs of varieties $f_{0}{ }^{-1}(\mathrm{~V})$.

For $\mathcal{G}=\mathcal{A}, \mathcal{X}$ or \mathcal{K}_{V}, we say that an unfolding f of f_{0} is a \mathcal{G}-trivial unfolding if it is \mathcal{G}-equivalent to the trivial unfolding $\mathrm{f}_{0} \times \mathrm{id}_{\mathbb{C}^{q}}$. It is \mathcal{G}-trivial as a family if the \mathcal{G} equivalence preserves the origin for all parameter values. If $f_{1}(x, u, v)=\left(\bar{f}_{1}(x, u, v), u, v\right)$ is an unfolding of f_{0} so that $\bar{f}_{1}(x, u, 0)=\bar{f}_{1}(x, u)$, then f_{1} will be said to extend f. An extension f_{1} of f is \mathcal{G}-trivial if it is \mathcal{G}-equivalent to $\mathrm{f} \times$ id by an equivalence which is the identity when $v=0$. Lastly, an unfolding f is \mathcal{G}-versal if for any other unfolding $g: \mathbb{C}^{s+r}, 0 \rightarrow$ $\mathbb{C}^{\mathfrak{t}+\mathrm{r}}, 0$ of f_{0}, there is a germ $\lambda: \mathbb{C}^{\mathrm{r}}, 0 \rightarrow \mathbb{C}^{\mathrm{q}}, 0$ such that $\lambda^{*} \mathrm{f}(\mathrm{x}, \mathrm{v})=(\overline{\mathrm{f}}(\mathrm{x}, \lambda(\mathrm{v})), \mathrm{v})$ is \mathcal{G}. equivalent to g .

Tangent spaces

For $\mathbb{C}^{\mathbf{s}}, 0$ with local coordinates x , we denote the ring of holomorphic germs $\mathcal{O}_{\mathbb{C}_{0}^{s}, 0}$ by c_{x} with maximal ideal m_{x}, and similarly with u also denoting local coordinates for $\mathbb{C}^{\mathfrak{q}}, c_{\mathrm{x}, \mathrm{u}}$ denotes $\mathcal{O}_{\mathbb{C}^{s+q}, 0}$, etc. Also for $f_{0}: \mathbb{C}^{\mathbf{s}}, 0 \rightarrow \mathbb{C}^{t}, 0$, the ring homomorphism $f_{0}^{*}: \mathcal{C}_{\mathbf{y}} \rightarrow \mathcal{C}_{\mathbf{x}}$, induced by composition, will be understood without being explicitly stated.

The tangent space to $\mathcal{C}_{\mathrm{s}, \mathrm{t}}$ at f_{0} consists of germs of vector fields $\zeta: \mathbb{C}^{\mathbf{s}}, 0 \rightarrow \mathrm{~T} \mathbb{C}^{\mathrm{t}}$ such that $\pi \circ \zeta=\mathrm{f}_{0}$ and is denoted by $\theta\left(\mathrm{f}_{0}\right) \sim \mathcal{C}_{\mathrm{x}}\left\{\frac{\partial}{\partial \mathrm{y}_{\mathrm{i}}}\right\}$ (here the R -module generated by $\varphi_{1}, \ldots, \varphi_{k}$ is denoted by $R\left\{\varphi_{1}, \ldots, \varphi_{k}\right\}$ or $R\left\{\varphi_{\mathrm{i}}\right\}$ if k is understood). Also, $\theta_{\mathrm{s}}=\theta\left(\mathrm{id}_{\mathbb{C}^{s}}\right) \widetilde{\rightarrow} \mathcal{C}_{\mathrm{X}}$ $\left\{\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\right\}$ and similarly for θ_{t}. The extended tangent spaces to \mathcal{A} and \mathcal{K} (which allow movement of the source and/or target) are given by

$$
\begin{aligned}
& \mathrm{T} \mathcal{A}_{\mathrm{e}} \cdot \mathrm{f}_{0}=c_{\mathrm{x}}\left\{\frac{\partial \mathrm{f}_{0}}{\partial \mathrm{x}_{\mathrm{i}}}\right\}+c_{\mathrm{y}}\left\{\frac{\partial}{\partial y_{\mathrm{i}}}\right\} \\
& \mathrm{T} \mathcal{K}_{\mathrm{e}} \cdot \mathrm{f}_{0}=c_{\mathrm{x}}\left\{\frac{\partial \mathrm{f}_{0}}{\partial \mathrm{x}_{\mathrm{i}}}\right\}+\mathrm{f}_{0}^{*} m_{\mathrm{y}} \cdot c_{\mathrm{x}}\left\{\frac{\partial}{\partial \mathrm{y}_{\mathrm{i}}}\right\} .
\end{aligned}
$$

For the tangent space for K_{V}, we consider the module of vector fields tangent to V . If $I(V)$ denotes the ideal of germs vanishing on V, then we let

$$
\theta_{V}=\left\{\zeta \in \theta_{t}: \zeta(\mathrm{I}(\mathrm{~V})) \subseteq \mathrm{I}(\mathrm{~V})\right\}
$$

This is denoted Derlog(V) by Saito [Sal; however, we use this simpler notation as there is no danger of confusion with other notions. θ_{V} extends to a sheaf of vector fields tangent to V , Θ_{V} which is easily seen to be coherent $[\mathrm{Sa}]$. If $\left\{\eta_{i}\right\}_{i=1}^{m}$ denotes a set of generators for θ_{V}, then

$$
\mathrm{T} \mathcal{K}_{\mathrm{V}, \mathrm{e}} \cdot \mathrm{f}_{0}=c_{\mathrm{x}}\left\{\frac{\partial \mathrm{f}_{0}}{\partial x_{\mathrm{i}}}\right\}+c_{\mathrm{x}}\left\{\eta_{\mathrm{i}} \circ \mathrm{f}_{0}\right\}
$$

For $\mathcal{G}=\mathcal{A}, \mathcal{K}$ or $\mathcal{K} V$, we denote the normal space by

$$
N G_{e} \cdot f_{0}=\theta\left(f_{0}\right) / T G_{e} \cdot f_{0}
$$

and the G_{e}-codimension of f_{0} is $\operatorname{dim}{ }_{\mathbb{C}} N G_{e} \cdot \mathrm{f}_{0}$.

The versality theorem allows us to relate several different approaches to versality (Martinet [Ma1] for \mathcal{A} and $\mathcal{K}\left[D 2\right.$] or [D1] for \mathcal{K}_{V}). For any unfolding $f: \mathbb{C}^{s+q}, 0 \rightarrow \mathbb{C}^{t+q}, 0$ we let $\partial_{j} f=\left.\frac{\bar{\partial}}{\partial u_{j}}\right|_{u=0}$.

Theorem (versality theorem) : For $\mathcal{G}=\mathcal{A}, \mathcal{K}$ or \mathcal{K}_{V}, and an unfolding f of f_{0} the following are equivalent:
i) $\quad \mathrm{f}$ is \mathcal{G}-versal
ii) $\quad T \mathcal{G}_{\mathrm{e}} \cdot \mathrm{f}_{0}+\left\langle\partial_{1} \mathrm{f}, \ldots, \partial_{\mathrm{q}} \mathrm{f}\right\rangle=\theta\left(\mathrm{f}_{0}\right)$
iii) any unfolding f_{1} of f_{0} which extends f is a \mathcal{G}-trivial extension.

Note: If $\mathrm{f}: \mathbb{C}^{\mathfrak{s}+\mathrm{q}}, 0 \rightarrow \mathbb{C}^{\mathrm{t}+\mathrm{q}}, 0$ is \mathcal{G}-versal then $\mathrm{q} \geq \mathcal{G e}^{-\operatorname{codim}\left(f_{0}\right) \text {, and if they are equal } \mathrm{f}}$ is said to be \mathcal{G}-miniversal.

Furthermore, f_{0} is infinitesimally stable if $T \mathcal{A}_{\mathrm{e}} \cdot \mathrm{f}_{0}=\theta\left(\mathrm{f}_{0}\right)$; by Mather [M-IV], if f_{0} has rank 0 then an unfolding f of f_{0} is infinitesimally stable when viewed as a germ of a mapping if and only if

$$
\mathrm{T} \mathcal{K}_{\mathrm{e}} \cdot \mathrm{f}_{0}+\left\langle\partial_{1} \mathrm{f}, \ldots, \partial_{\mathrm{q}} \mathrm{f}, \frac{\partial}{\partial \mathrm{y}_{1}}, \ldots, \frac{\partial}{\partial \mathrm{y}_{\mathrm{t}}}\right\rangle=\theta\left(\mathrm{f}_{0}\right) .
$$

Hence, any f_{0} with $\mathcal{K}_{\mathrm{e}}-\operatorname{codim}\left(\mathrm{f}_{0}\right)<\infty$ has an unfolding f which is infinitesimally stable. Then, any unfolding of f is \mathcal{A}-equivalent to $\mathrm{f} \times \mathrm{id}$.

Examples for K_{V}-equivalence

Example (1.1):
Let $(V, 0) \subset\left(\mathbb{C}^{4}, 0\right)$, with coordinates (X, Y, Z, W), be defined by $\mathrm{YW}^{2}-Z^{2}=0$. Then, $V=$ Whitney umbrella $\times \mathbb{C}$ and is parametrized by $F(x, y, u)=\left(x, y^{2}, u y, u\right)$. Consider $g_{0}: \mathbb{C}^{3}, 0$ $\rightarrow \mathbb{C}^{4}, 0$ defined by $g_{0}(x, y, z)=(x, y, z, p(x, y))$. It can be shown that θ_{V} is generated by

$$
2 Y \frac{\partial}{\partial Y}+Z \frac{\partial}{\partial Z}, \quad Z \frac{\partial}{\partial Z}+W \frac{\partial}{\partial W}, \quad W Y \frac{\partial}{\partial Z}+Z \frac{\partial}{\partial W}, \quad 2 Z \frac{\partial}{\partial Y}+W^{2} \frac{\partial}{\partial Z}, \quad \frac{\partial}{\partial X}
$$

We denote these by $\left\{\eta_{i}\right\}_{i=1}^{5}$. Since

$$
c_{\mathrm{x}, \mathrm{y}, \mathrm{z}}\left\{\frac{\partial}{\partial \mathrm{x}}, \ldots, \frac{\partial}{\partial \mathrm{~W}}\right\}=\mathcal{C}_{\mathrm{x}, \mathrm{y}, \mathrm{z}}\left\{\frac{\partial \mathrm{~g}_{0}}{\partial \mathrm{x}}, \frac{\partial g_{0}}{\partial \mathrm{y}}, \frac{\partial g_{0}}{\partial \mathrm{z}}, \frac{\partial}{\partial \mathrm{~W}}\right\}
$$

then modulo $\mathcal{C}_{\mathrm{x}, \mathrm{y}, \mathrm{z}}\left\{\frac{\partial \mathrm{g}_{0}}{\partial \mathrm{x}}, \frac{\partial g_{0}}{\partial \mathrm{y}}, \frac{\partial g_{0}}{\partial z}\right\}, \frac{\partial}{\partial \mathrm{X}}, \frac{\partial}{\partial Y}$, and $\frac{\partial}{\partial Z}$ are equal respectively to $-\frac{\partial \mathrm{p}}{\partial \mathrm{x}} \frac{\partial}{\partial \mathrm{W}}$, $-\frac{\partial p}{\partial y} \frac{\partial}{\partial w}$, and 0 . Consequently, $\eta_{i} \circ g_{0}$ for $i=1$ to 5 equal, respectively,

$$
-2 y \frac{\partial p}{\partial y} \cdot \frac{\partial}{\partial W}, \quad p(x, y) \frac{\partial}{\partial W}, \quad z \frac{\partial}{\partial W}, \quad-2 z \frac{\partial p}{\partial y} \cdot \frac{\partial}{\partial W}, \quad-\frac{\partial p}{\partial x} \cdot \frac{\partial}{\partial W} .
$$

Hence,

$$
\begin{aligned}
N \mathcal{K}_{V, e} \cdot g_{0}= & \mathcal{C}_{\mathrm{x}, \mathrm{y}, \mathrm{z}}\left\{\frac{\partial}{\partial \mathrm{x}}, \ldots, \frac{\partial}{\partial \mathrm{~W}}\right\} / \mathcal{C}_{\mathrm{x}, \mathrm{y}, \mathrm{z}}\left\{\frac{\partial \mathrm{~g}_{0}}{\partial \mathrm{x}}, \ldots, \frac{\partial g_{0}}{\partial \mathrm{z}}, \eta_{\mathrm{i}} \circ \mathrm{~g}_{0}\right\} \\
& \widetilde{\rightarrow} \mathcal{C}_{\mathrm{x}, \mathrm{y}, \mathrm{z}}\left\{\frac{\partial}{\partial \mathrm{w}}\right\} /\left\{\mathrm{y} \frac{\partial \mathrm{p}}{\partial \mathrm{y}}, \mathrm{p}, \mathrm{z}, \frac{\partial \mathrm{p}}{\partial \mathrm{x}}\right\} \cdot \frac{\partial}{\partial \mathrm{w}}
\end{aligned}
$$

$$
\begin{equation*}
\underset{\rightarrow}{\sim} C_{x, y} /\left(y \frac{\partial p}{\partial y} \cdot, p, \frac{\partial p}{\partial x}\right) \tag{1.2}
\end{equation*}
$$

If we pull back F via g_{0} to form $f_{0}(x, y)=\left(x, y^{2}, y p\left(x, y^{2}\right)\right)$

$$
\begin{array}{ll}
\underset{\substack{\mathbb{C}^{3}, 0 \\
\uparrow}}{\xrightarrow{\mathrm{~F}}} \underset{\substack{4 \\
\mathbb{C}_{0} \\
\\
\mathbb{C}_{0}, 0 \\
\mathbb{C}^{2}, 0}}{\mathrm{f}_{\mathrm{o}}^{3}}
\end{array}
$$

then Mond computes $\mathrm{N} \mathcal{A}_{\mathrm{e}} \cdot \mathrm{f}_{0}$ be exactly (1.2) [Mo1].

Example (1.3)

Let $f_{0}: \mathbb{C}^{\mathfrak{n}}, 0 \rightarrow \mathbb{C}, 0$ be a weighted homogeneous germ defining an isolated singularity. Also, let $F: \mathbb{C}^{n+q}, 0 \rightarrow \mathbb{C}^{1+q}, 0$ be its versal unfolding, with $V=$ discriminant of F. Then, Saito [Sa] gives the following construction for the generators of θ_{V}. Let $\left\{\varphi_{i}\right\}_{i=1}^{q}$ be a basis for $N \mathcal{A}_{e} \cdot f_{0}$ and let $\varphi_{0}=1$. We may assume up to equivalence that F is given by $\bar{F}(x, u), u)=\left(f_{0}(x)+\sum_{i=1}^{q} u_{i} \varphi_{i}, u\right)$.

$$
\overline{\mathrm{F}} \cdot \varphi_{\mathrm{i}}=\sum_{\mathrm{j}=0}^{q} \mathrm{a}_{\mathrm{ij}}(\mathrm{u}) \varphi_{\mathrm{j}} \quad \bmod \left(\frac{\partial \overline{\mathrm{~F}}}{\partial \mathrm{x}_{1}}, \ldots, \frac{\partial \overline{\mathrm{~F}}}{\partial \mathrm{x}_{\mathrm{n}}}\right)
$$

Let

$$
\eta_{i}=-y \cdot \frac{\partial}{\partial u_{i}}+\sum_{i=1}^{q} a_{i j} \frac{\partial}{\partial u_{j}}+a_{i 0} \frac{\partial}{\partial y} \quad \text { for } i>0
$$

and

$$
\eta_{0}=\frac{1}{d} \cdot \text { Euler vector field } \quad\left(d=w t\left(f_{0}\right)\right)
$$

Then, $\left\{\eta_{i}\right\}_{i=0}^{q}$ generate θ_{V}. Let $g_{0}: \mathbb{C} \rightarrow \mathbb{C}^{1+q}$ be defined by $g_{0}(y)=(y, 0)$. Then, $\eta_{i} \circ g_{0}=-y \frac{\partial}{\partial u_{i}}$ for $\mathrm{i}>0$ or $=y \frac{\partial}{\partial y}$ for $\mathrm{i}=0$. Thus,

$$
\begin{aligned}
N \mathcal{K}_{V, e} \cdot g_{0} & =c_{y}\left\{\frac{\partial}{\partial y}, \frac{\partial}{\partial u_{i}}\right\} / c_{y}\left\{\frac{\partial g_{0}}{\partial y}, \eta_{i} \circ g_{0}\right\} \\
& \simeq c_{y} / m_{\mathrm{y}}\left\{\frac{\partial}{\partial u_{i}}\right\} \\
& \left.\simeq \underset{\mathrm{i}=1}{\oplus} \mathbb{C} \quad \text { (here } \mathrm{q}=\tau\left(f_{0}\right)-1\right)
\end{aligned}
$$

Again g_{0} pulls back F to give $f_{0}: \mathbb{C}^{n}, 0 \rightarrow \mathbb{C}, 0$.

$$
\mathrm{N} \mathcal{A}_{\mathrm{e}} \cdot \mathrm{f}_{0} \xrightarrow{\sim} C_{\mathrm{x}} /\left(\frac{\partial f_{0}}{\partial \mathrm{x}_{1}}, \ldots, \frac{\partial f_{0}}{\partial \mathrm{x}_{\mathrm{n}}}\right)+<1>
$$

Since f_{0} is weighted homogeneous, $f_{0} \in\left(\frac{\partial f_{0}}{\partial x_{1}}, \ldots, \frac{\partial f_{0}}{\partial x_{n}}\right)$. Thus, as a c_{y}-module.

$$
\mathrm{N} \not \mathcal{A}_{\mathrm{e}} \cdot \mathrm{f}_{0} \underset{\mathrm{i}=1}{\leftrightarrows} \stackrel{\mu-1}{\oplus} \mathbb{C} .
$$

Since $\mu=\tau$, these C_{y}-modules are isomorphic.

Infinitesimal Conditions for Triviality

Next, the relations we shall establish between \mathcal{A} and \mathcal{K}_{V}-equivalence are most easily established at the infinitesimal level. For this reason, we recall the infinitesimal conditions for triviality.

Let $\mathrm{f}: \mathbb{C}^{\mathrm{s}+\mathrm{q}}, 0 \rightarrow \mathbb{C}^{\mathrm{t}+\mathrm{q}}, 0$ be an unfolding of f_{0} and let $\mathrm{f}_{1}: \mathbb{C}^{\mathrm{s}+\mathrm{q}+\mathrm{r}}, 0 \rightarrow \mathbb{C}^{\mathrm{t}+\mathrm{q}+\mathrm{r}}, 0$ extend f (with local coordinates u for \mathbb{C}^{q} and v for $\mathbb{C}^{\mathbf{r}}$).

Criterion for \mathcal{A}-triviality: f_{1} is an \mathcal{A}-trivial extension of f if and only if there exist vector fields $\xi_{i} \in \mathcal{C}_{\mathrm{x}, \mathrm{u}, \mathrm{v}}\left\{\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\right\}, \delta_{\mathrm{i}} \in \mathcal{C}_{\mathrm{y}, \mathrm{u}, \mathrm{v}}\left\{\frac{\partial}{\partial \mathrm{y}_{\mathrm{i}}}\right\}$ and $\zeta_{\mathrm{i}} \in \mathcal{C}_{u, v}\left\{\frac{\partial}{\partial u_{i}}\right\}$ such that

$$
\begin{equation*}
\frac{\bar{f}_{1}}{\partial v_{i}}=-\xi_{i}\left(\bar{f}_{1}\right)-\zeta_{i}\left(\bar{f}_{1}\right)+\delta_{i} \circ f_{1} \quad 1 \leq i \leq r \tag{1.4}
\end{equation*}
$$

Also, if $q=0$ and $f_{1}=f_{0}$, then f_{1} is an \mathcal{A}-trivial unfolding of f_{0} if and only if (1.4) can be solved with $\zeta_{i} \equiv 0$. Furthermore, in this case f_{1} is an \mathcal{A}-trivial family if and only if we can choose $\xi_{i} \in m_{\mathrm{x}} \cdot \mathcal{C}_{\mathrm{x}, \mathrm{v}}\left\{\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\right\}, \delta_{\mathrm{i}} \in m_{\mathrm{y}} \cdot \mathcal{C}_{\mathrm{y}, \mathrm{v}}\left\{\frac{\partial}{\partial \mathrm{v}_{\mathrm{i}}}\right\}$ (and again $\zeta_{\mathrm{i}} \equiv 0$).

This criterion follows from the reduction lemma for \mathcal{A}-equivalence in Martinet [Ma1]. The converse follows by differentiating the trivialization with respect to coordinates trivializing the unfoldings in the v_{i}-directions.

Criterion for \mathcal{K}_{V}-triviality: f_{1} is a \mathcal{K}_{V}-trivial extension of f if and only if there are vector fields $\xi_{\mathrm{i}} \in \mathcal{C}_{\mathrm{x}, \mathrm{u}, \mathrm{v}}\left\{\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\right\}, \delta_{\mathrm{i}} \in C_{\mathrm{y}, \mathrm{u}, \mathrm{v}}\left\{\eta_{\mathrm{i}}\right\}$ (where $\left\{\eta_{\mathrm{i}}\right\}$ generate θ_{V}) and $\zeta_{\mathrm{i}} \in \mathcal{C}_{\mathrm{u}, \mathrm{v}}\left\{\frac{\partial}{\partial \mathrm{u}_{\mathrm{i}}}\right\}$ such that (1.4) is satisfied.

Similarly, if $q=0, f_{1}$ is a \mathcal{K}_{V}-trivial unfolding of f_{0} if (1.4) can be solved with ζ_{i} $\equiv 0$, or a \mathcal{K}_{V}-trivial family if (1.4) can be solved with $\xi_{\mathrm{i}} \in m_{\mathrm{x}} \mathcal{C}_{\mathrm{x}, \mathrm{v}}\left\{\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\right\}$. This follows for \mathcal{K}_{V}-equivalence by the corresponding reduction lemmas in $[\mathrm{D} 1]$ or [D2].

Geometric Criteria for Finite Determinancy

Finite \mathcal{A}-determinacy and finite \mathcal{K}_{V}-determinacy each have geometric characterizations. For $\mathcal{G}=\mathcal{A}$ and \mathcal{X} by Mather [M-III], and \mathcal{K}_{V}, by [D2], finite $\mathcal{G}-$ determinacy of f_{0} is equivalent to finite \mathcal{G}-codimension of f_{0}. Via this, there is the geometric characterization of finite \mathcal{A}-determinacy by Gaffney and Mather: f_{0} is finitely \mathcal{A} determined if and only if f_{0} is infinitesimally stable in a punctured neighbourhood of 0 , i.e. there is a representative of $f, f_{1}: U \rightarrow \mathbb{C}^{t}$ such that f_{1} is infinitesimally stable on $U \backslash\{0\}$.

For finite \mathcal{K}_{V}-determinacy, let $\left\{\eta_{\mathrm{i}}\right\}_{\mathrm{i}=1}^{\mathrm{m}}$ be a set of generators of θ_{V}. By coherence they also generate $\Theta_{\mathrm{V}, \mathrm{y}}$ in a neighbourhood of 0 . By $\mathrm{f}_{0}: \mathbb{C}^{\mathbf{s}}, 0 \rightarrow \mathbb{C}^{\mathrm{t}}, 0$ being transverse to $(\mathrm{V}, 0)$ at x_{0} we shall mean

$$
\mathrm{df}_{0}\left(\mathrm{x}_{0}\right)\left(\mathrm{T} \mathbb{C}^{\mathrm{s}}\right)+\left\langle\eta_{1\left(\mathrm{f}\left(\mathrm{x}_{0}\right)\right)}, \ldots, \eta_{\mathrm{m}\left(\mathrm{f}\left(\mathrm{x}_{0}\right)\right)}\right\rangle=\mathrm{T}_{\mathrm{f}\left(\mathrm{x}_{0}\right)}^{\mathrm{t}}
$$

Then, f_{0} is finitely \mathcal{K}_{V}-determined if and only if f_{0} is transverse to V in a punctured neighbourhood of 0 (although this characterization was stated in [D2] for finite map germs f_{0}, the proof given there works in general).

\mathcal{K}_{V}-equivalence and suspension

Lastly, we relate \mathcal{K}_{V}-equivalence to \mathcal{K}_{V},-equivalence for $\mathrm{V}^{\prime}=\mathrm{V} \times \mathbb{C}^{\mathrm{T}}$. Given f_{0} : $\mathbb{C}^{\mathbf{s}}, 0 \rightarrow \mathbb{C}^{\mathbf{t}}, 0$ and $\mathrm{g}: \mathbb{C}^{\mathbf{t}}, 0 \rightarrow \mathbb{C}^{\mathbf{p}}, 0$ we let $\mathrm{g}_{*} \mathrm{f}_{0}=\mathrm{g} \circ \mathrm{f}_{0}$. For an unfolding $\mathrm{f}: \mathbb{C}^{\mathbf{s}+\mathrm{q}}, 0 \rightarrow \mathbb{C}^{\mathrm{t}+\mathrm{q}}, 0$ of f_{0}, we define $g_{*} f(x, u)=(g \circ \bar{f}(x, u), u)$ which is an unfolding of $g_{*} f_{0}$. We consider i: $\mathbb{C}^{\mathfrak{t}}, 0 \rightarrow \mathbb{C}^{\mathfrak{t}+\boldsymbol{r}}, 0$ with $\mathrm{i}(\mathrm{y})=(\mathrm{y}, 0)$ and $\pi: \mathbb{C}^{\mathfrak{t}+\boldsymbol{r}}, 0 \rightarrow \mathbb{C}^{\mathrm{t}}, 0$ with $\pi(\mathrm{y}, \mathrm{w})=\mathrm{y}$. We also note g induces a C_{X}-module homomorphism $\mathrm{g}_{*}: \theta\left(\mathrm{f}_{0}\right) \rightarrow \theta\left(\mathrm{g}_{*} \mathrm{f}_{0}\right)$, defined by $\mathrm{g}_{*}(\zeta)=\operatorname{dg}(\zeta)$.

We say that $\mathrm{V}, 0 \subset \mathbb{C}^{\mathrm{t}}, 0$ and $\mathrm{V}_{1}, 0 \subset \mathbb{C}^{\mathrm{P}}, 0$ are g -related if for a set of generators $\left\{\eta_{i}\right\}_{i=1}^{m}$ of θ_{V} there are $\eta_{i}^{\prime} \in \theta_{V_{1}}$ so that $g_{*}\left(\eta_{i}\right)=\eta_{i}^{\prime} \circ g$. For example, $V, 0 \subset \mathbb{C}^{t}, 0$ and $\mathrm{V}^{\prime}=\mathrm{V} \times \mathbb{C}^{\mathrm{r}}, 0 \subset \mathbb{C}^{\mathrm{t}+\mathrm{r}}$ are both i and π related.

Proposition 1.5: With the preceding notation, let f be an unfolding of f_{0} and f_{1} an extension of \mathbf{f}.
i) Suppose $\mathrm{V}, 0 \subset \mathbb{C}^{\mathrm{t}}, 0$ and $\mathrm{V}_{1}, 0 \subset \mathbb{C}^{\mathrm{p}}, 0$ are g -related; if f is a \mathcal{K}_{V}-trivial unfolding (respectively family) then $\mathrm{g}_{*} \mathrm{f}$ is a $\mathrm{K}_{\mathrm{V}_{1}}$-trivial unfolding (respectively family); also if f_{1} is a \mathcal{K}_{V}-trivial extension of f then $g_{*} f_{1}^{1}$ is a $\mathcal{K}_{V_{1}}$-trivial extension of $g_{*} f$.
ii) $\quad \mathrm{i}_{*}$ and π_{*} induce isomorphisms of \mathcal{C}_{y} (respectively $C_{\mathrm{y}, \mathrm{w}}$)-modules)

$$
\mathrm{i}_{*}: N \mathcal{K}_{\mathrm{V}, \mathrm{e}} \mathrm{f}_{0} \stackrel{\sim}{\rightarrow} \mathrm{~K}_{\mathrm{V}^{\prime}, \mathrm{e}} \mathrm{i}_{*} \mathrm{f}_{0} \text { and } \pi_{*}: \mathrm{NK}, \mathrm{~V}^{\prime}, \mathrm{e}^{\mathrm{f}_{0}^{\prime}} \xrightarrow{\sim} \mathrm{NK} \mathrm{~V}, \mathrm{e}^{\pi_{*} \mathrm{f}^{\prime}} 0
$$

iii) f is \mathcal{K}_{V}-versal if and only if $\mathrm{i}_{*} \mathrm{f}$ is $\mathcal{K}_{\mathrm{V}^{\prime}}$,-versal,
f^{\prime} is $\mathcal{K}_{\mathrm{V}^{\prime}}$-versal if and only if $\pi_{*} \mathrm{f}$ is \mathcal{K}_{V}-versal.

Proof: i) By the infinitesimal criterion we may solve

$$
\frac{\bar{f}_{1}}{\partial v_{i}}=-\xi_{i}\left(\bar{f}_{1}\right)-\zeta_{i}\left(\bar{f}_{1}\right)+\delta_{i} \circ f_{1} .
$$

Applying dg, we obtain

$$
\begin{equation*}
\frac{\partial\left(g \circ \bar{f}_{1}\right)}{\partial v_{i}}=-\xi_{i}\left(g \circ \bar{f}_{1}\right)-\zeta_{i}\left(g \circ \bar{f}_{1}\right)+\operatorname{dg}\left(\delta_{i} \circ f_{1}\right) \tag{1.6}
\end{equation*}
$$

If $\delta_{i}=\sum h_{i j} \eta_{j}$ with $h_{i j} \in C_{x, u, v}$, then

$$
\begin{aligned}
\operatorname{dg}\left(\delta_{i}\right) \circ f_{1} & =\sum h_{i j}\left(\operatorname{dg}\left(\eta_{i}\right) \circ f_{1}\right)=\sum h_{i j} \cdot \eta_{i}^{\prime} \circ g \circ f_{1} \\
& =\eta^{(i)^{\prime}} \circ(g \circ \bar{f}) \text { with } \quad \eta^{(i)^{\prime}}=\sum h_{i j} \eta_{i}^{\prime}
\end{aligned}
$$

Substituting into (1.6) satisfies the criterion for triviality for $g_{*} f_{1}$. The cases of triviality of unfoldings or families are similar.
ii) Suppose V and V_{1} are g-related:

If $\zeta \in \mathrm{T} \mathcal{K}_{\mathrm{V}, \mathrm{e}} \mathrm{f}_{0}$, then $\zeta=\left.\frac{\partial \dot{f}}{\partial t}\right|_{\mathrm{t}=0}$ for f a 1 -parameter \mathcal{K}_{V}-trivial unfolding of f_{0}.
Then, $g_{*}(\zeta)=\left.\frac{\partial(g \circ \bar{f})}{\partial t}\right|_{t=0} \in T K_{V_{1}, e^{*}} g_{*} f_{0}$. Thus, g_{*} induces a map

$$
g_{*}: N \mathcal{K}_{V, e} \cdot \mathrm{f}_{0} \rightarrow \mathrm{NK}_{\mathrm{V}_{1}, \mathrm{e}} \cdot \mathrm{~g}_{*} \mathrm{f}_{0} .
$$

It remains to show that this is an isomorphism for $g=i$ and $g=\pi$. However, by naturality π_{*} 。 $\mathrm{i}_{*}=(\pi \circ \mathrm{i})_{*}=\mathrm{id}_{*}=\mathrm{id}$. If we can show π_{*} is an isomorphism on normal spaces then so is i_{*}. Explicitly if $\mathrm{f}_{0}^{\prime}: \mathbb{C}^{\mathbf{s}}, 0 \rightarrow \mathbb{C}^{\mathbf{t + r}}, 0$ has components $\mathrm{f}_{0}^{\prime}=\left(\mathrm{f}_{0,1}^{\prime}, \mathrm{f}_{0,2}^{\prime}\right)$ then $\theta_{V^{\prime}}$ is generated by $\left\{\eta_{i}\right\} \cup\left\{\frac{\partial}{\partial w_{j}}\right\}$ where $\left\{\eta_{i}\right\}$ are a set of generators for θ_{V}; hence,

$$
\begin{aligned}
\mathrm{N} \mathcal{K}_{\mathrm{V}^{\prime}, \mathrm{e}} \cdot \mathrm{f}_{0}^{\prime} & =c_{\mathrm{x}}\left\{\frac{\partial}{\partial \mathrm{y}_{\mathrm{i}}}, \frac{\partial}{\partial \mathrm{w}_{\mathrm{j}}}\right\} /\left(c_{\mathrm{x}}\left\{\frac{\partial f_{0}}{\partial \mathrm{x}_{\mathrm{i}}}\right\}+c_{\mathrm{x}}\left\{\eta_{\mathrm{i}} \circ \mathrm{f}_{0}^{\prime}, \frac{\partial}{\partial \mathrm{w}_{\mathrm{j}}}\right\}\right) \\
& \simeq c_{\mathrm{x}}\left\{\frac{\partial}{\partial \mathrm{y}_{\mathrm{i}}}\right\} / c_{\mathrm{x}}\left\{\frac{\partial \mathrm{f}_{01}}{\partial \mathrm{x}_{\mathrm{i}}}\right\}+c_{\mathrm{x}}\left\{\eta_{\mathrm{i}} \circ \mathrm{f}_{01}^{\prime}\right\} \\
& \simeq \mathrm{NK}, \mathrm{e}^{\cdot \pi_{*} \mathrm{f}^{\prime} 0}
\end{aligned}
$$

and the projection is exactly π_{*}.
iii) Finally since π_{*} and i_{*} commute with $\frac{\partial}{\partial u_{i}}$, condition ii) of the versality theorem yields the results.

§2. Relating \mathcal{A} and \mathcal{K}_{V}-equivalence

In this section we deduce relations between \mathcal{K}_{V}-equivalence of unfoldings and families and \mathcal{A}-equivalence for the corresponding unfoldings and families induced via pullback. As a consequence we obtain the numerical equality between \mathcal{A}_{e}-codimension and $\mathcal{K}_{\mathrm{V}, \mathrm{e}}{ }^{-}$ codimension described in the introduction.

Because the \mathcal{A}-equivalence and \mathcal{K}_{V}-equivalence are for germs which map between different spaces, we slightly change notation from the preceding section. Consider a germ f_{0} : $\mathbb{C}^{\mathrm{n}}, 0 \rightarrow \mathbb{C}^{\mathrm{p}}, 0$ which has finite \mathcal{K}-codimension. As mentioned in the preceding section, there is an unfolding $\mathrm{F}: \mathbb{C}^{\mathrm{n}^{\prime}}, 0 \rightarrow \mathbb{C}^{\mathrm{p}^{\prime}}, 0$ of f_{0} which is stable when viewed as a germ. We shall refer to such an unfolding as a stable unfolding of f_{0}. There is an inclusion $g_{0}: \mathbb{C}^{p}, 0 \rightarrow \mathbb{C}^{p^{\prime}}, 0$ given by $g_{0}(y)=(y, 0)$ and g_{0} is transverse to F, and f_{0} may be viewed as being obtained by the fiber product, i.e. pull-back of F by g_{0}.

$$
\begin{array}{rll}
\mathbb{C}^{\mathrm{n}^{\prime}, 0} & \xrightarrow{\mathrm{~F}} & \mathbb{C}^{\mathrm{p}^{\prime}}, 0 \\
\uparrow & & \uparrow \mathrm{~g}_{0} \\
\mathbb{C}^{\mathrm{n}}, 0 & \xrightarrow{\mathrm{f}_{0}} & \mathbb{C}^{\mathrm{p}}, 0
\end{array}
$$

Also, given an unfolding g of g_{0} we have an induced unfolding f of f_{0} obtained as the fiber product of F and $\overline{\mathrm{g}}$. We shall relate the \mathcal{A}-equivalence of f_{0} and its unfoldings with the \mathcal{K}_{V}-equivalence of g_{0} and its unfoldings.

By [M2], we may choose a representative of F, again denoted by $F: U \rightarrow W$ such that if $\sum(F)=\left\{x \in U: r k \operatorname{df}(x)<p^{\prime}\right\}$ denotes the critical set of F, then

1) $\quad \mathrm{F}^{-1}(0) \cap \Sigma(\mathrm{F})=\{0\}$
2) $\mathrm{F} \mid \Sigma(\mathrm{F})$ is finite to one
3) F is stable.

We let $D(F)=F\left(\sum(F)\right)$. If $n \geq p$ this is the discriminant of F, while if $n<p$ it is the image of F. We denote $D(F)$ by V.

Remark 2.1: Any unfolding of F is \mathcal{A}-equivalent to $F \times$ id. If we were to replace F by $F \times i d_{\mathbb{C}^{r}}$ then $D\left(F \times i d_{\mathbb{C}^{r}}\right)=D(F) \times \mathbb{C}^{r}=V^{\prime}$, say. By proposition $1.5, \mathcal{K}_{V}$-equivalence for g_{0} and its unfoldings is equivalent to \mathcal{K}_{V},-equivalence for $\mathrm{i}_{*} \mathrm{~g}_{0}=\mathrm{i} \circ \mathrm{g}_{0}: \mathbb{C}^{\mathrm{p}}, 0 \rightarrow \mathbb{C}^{\mathrm{p}^{\prime}}, 0 \hookrightarrow$ $\mathbb{C}^{\mathrm{p}^{\prime}+\mathrm{r}}, 0$. Thus, it does not matter which stable unfolding of f_{0} we choose.

A principal reason for the close relation between \mathcal{A} and \mathcal{K}_{V}-equivalence is the characterization of θ_{V} due to Arnold [A] and Saito [Sa] (see also Bruce [Br] and Terao [T]).

Lemma 2.2: With the preceding notation,

$$
\theta_{\mathbf{V}}=\left\{\eta \in \theta_{\mathrm{p}^{\prime}}: \text { there is a } \xi \in \theta_{\mathrm{n}^{\prime}} \text { so that } \xi(\mathrm{F})=\eta \circ \mathrm{F}\right\}
$$ that is, the set of liftable vector fields.

Proof: The proofs for $n \geq p$ are given in the above references. The argument for $n<p$ is the same; by Hartogs' theorem η lifts if and only if it lifts off a set of codimension 2 in $\mathbb{C}^{\mathbf{n}^{\prime}}$. As F is stable, the only singular points of codimension 1 occur at double points when $p=n$ +1 . Clearly η lifts from the regular points of V. At double points, F is a suspension of the germ $\mathbb{C}, 0 \perp \perp \mathbb{C}, 0 \rightarrow \mathbb{C}^{2}, 0$ defined by $x \mapsto x, y \mapsto y$ in \mathbb{C}^{2} with image $x \cdot y=0$. The vector fields tangent to this set are generated by $\mathbf{x} \frac{\partial}{\partial \mathrm{x}}$ and $\mathrm{y} \frac{\partial}{\partial \mathrm{y}}$ and clearly lift. The converse is immediate since $\mathrm{dF}(\xi)$ is tangent to $\mathrm{V}_{\text {reg }}$ so for any $\mathrm{h} \in \mathrm{I}(\mathrm{V}), \xi(\mathrm{h})=0$ on $\mathrm{V}_{\text {reg }}$ and hence by continuity on V. \quad -

The first question to resolve is the relation between g_{0} being finitely \mathcal{K}_{V}-determined and f_{0} being finitely \mathcal{A}-determined.

Proposition $2.3 \mathrm{f}_{0}$ is finitely \mathcal{A}-determined if and only if g_{0} is finitely \mathcal{K}_{V}-determined.

Proof: For both directions we use the geometric criterion from the preceding section. \Leftarrow As g_{0} is finitely \mathcal{K}_{V}-determined it is transverse to V in a punctured neighbourhood of 0 . Let W be such a punctured neighbourhood with a representative of g_{0} still denoted by g_{0}. Let $\left\{\eta_{i}\right\}$ be a set of vector fields in θ_{V} which generate $\Theta_{V, y^{\prime}}$ for y^{\prime} in a neighbourhood of 0 which includes W (by shrinking W if necessary). For $y \in W$, let $S=F^{-1}\left(g_{0}(y)\right) \cap \sum(F)$, which is finite. For each i let ξ_{i} be a lift of η_{i} which, by shrinking U if necessary, is defined on U. Then, $F: \mathbb{C}^{n^{\prime}}, S \rightarrow \mathbb{C}^{\mathrm{p}^{\prime}}, g_{0}(y)$ is stable. Pick a subset $\left\{\eta_{1}, \ldots, \eta_{r}\right\}$ of the above set $\left\{\eta_{i}\right\}$ such that $\left\langle\eta_{1\left(g_{0}(y)\right)}, \ldots, \eta_{r\left(g_{0}(y)\right)}\right\rangle$ spans a complementary subspace to
$\operatorname{dg}_{0}(\mathrm{y})\left(\mathrm{T} \mathbb{C}^{\mathrm{p}}\right)$. Then, since $\xi_{\mathrm{i}}(\mathrm{F})=\mathrm{F} \circ \eta_{\mathrm{i}}$, by a standard argument in e.g. Martinet [Ma1], $\mathrm{F}: \mathbb{C}^{\mathrm{n}^{\prime}}, \mathrm{S} \rightarrow \mathbb{C}^{\mathrm{p}^{\prime}}, \mathrm{g}_{0}(\mathrm{y})$ is \mathcal{A}-equivalent as a multi-germ to $\mathrm{f}_{0} \times$ id $: \mathbb{C}^{\mathrm{n}^{\prime}}, \mathrm{S} \rightarrow \mathbb{C}^{\mathrm{p}^{\prime}}, \mathrm{y}$. This implies that $f_{0}: \mathbb{C}^{n}, S \rightarrow \mathbb{C}^{p}, y$ is stable (f_{0} is stable if and only if $f_{0} \times$ id is by the infinitesimal criteria of Mather [M-IV]). As y was an arbitrary point of W, f_{0} is stable in a punctured neighbourhood of 0 and so is finitely \mathcal{A}-determined.

Conversely, if f_{0} is finitely \mathcal{A}-determined then for y in a punctured neighbourhood W of $0, f_{0}: \mathbb{C}^{n}, S \rightarrow \mathbb{C}^{p}, y$ is stable. Hence, $F: \mathbb{C}^{n^{\prime}}, S \rightarrow \mathbb{C}^{p^{\prime}}, y$ is an \mathcal{A}-trivial unfolding of f_{0}. Thus, there are vector fields $\xi_{i}, \eta_{i}^{\prime}$ defined near S and y so that $\xi_{i}(F)=\eta_{i}^{\prime} \circ F$ and $\left\{\eta_{i(y)}^{\prime}\right\}$ span a subspace complementary to \mathbb{C}^{p}. Thus, $\eta_{i}^{\prime} \in \Theta_{V, y}$. By choosing W smaller if necessary, $\left\{\eta_{i}\right\}$ generate $\Theta_{V, y}$ for $y \in W$. Hence, the subspace spanned by $\left\{\eta_{i(y)}^{\prime}\right\}$ is contained in that spanned by $\left\{\eta_{i(y)}\right\}$. Thus, \mathbb{C}^{p} is transverse to V at y. Thus, \mathbb{C}^{p} is transverse to V in the punctured neighbourhood W , i.e. g_{0} is transverse to V on W and hence is finitely \mathcal{K}_{V}-determined.

Second, we relate \mathcal{K}_{V}-triviality of unfoldings of g_{0} with \mathcal{A}-triviality of unfoldings of f_{0}. We let $g(x, u)$ be an unfolding of g_{0} and $g_{1}(x, u, v): \mathbb{C}^{p+q+r}, 0 \rightarrow \mathbb{C}^{p^{\prime}+q+r}, 0$ an extension of g. We let f and f_{1} denote the induced unfoldings of f_{0}.

Proposition 2.4: i) If g is a \mathcal{K}_{V}-trivial unfolding (respectively \mathcal{K}_{V}-trivial family) then f is an \mathcal{A}-trivial unfolding (respectively \mathcal{A}-trivial family).
ii) If g_{1} is a \mathcal{K}_{V}-trivial extension of g then f_{1} is an \mathcal{A}-trivial extension of f.

Proof: We give the proof of $i i$); that of i) is analogous (and slightly easier).
By the infinitesimal criterion, there exist germs of vector fields $\zeta_{i} \in \mathcal{C}_{\mathrm{y}, \mathrm{u}, \mathrm{v}}\left\{\frac{\partial}{\partial y_{i}}\right\}, \chi_{\mathrm{i}} \in$
$\mathcal{C}_{\mathrm{y}, \mathrm{u}, \mathrm{v}}\left\{\eta_{\mathrm{i}}\right\}$, and $\gamma_{\mathrm{i}} \in \mathcal{C}_{\mathrm{u}, \mathrm{v}}\left\{\frac{\partial}{\partial \mathrm{u}_{\mathrm{i}}}\right\}$ (with $\left\{\eta_{\mathrm{i}}\right\}$ generating θ_{V}) such that

$$
\begin{equation*}
\frac{\partial \bar{g}_{1}}{\partial v_{i}}=-\zeta_{i}\left(\bar{g}_{1}\right)-\gamma_{i}\left(\bar{g}_{1}\right)+\chi_{i} \circ g_{1} \tag{2.5}
\end{equation*}
$$

Let $\left\{\xi_{i}\right\}$ denote the lifts of the $\left\{\eta_{i}\right\}$. If $\chi_{i}=\sum h_{i j} \eta_{j}$, let $\delta_{i}=\sum h_{i j}^{\prime} \xi_{j}$ with $h_{i j}^{\prime}=h_{i j}^{\prime \prime} \circ(F \times i d)$. To define $h_{i j}^{\prime \prime}$, we note that $h_{i j}$ is a germ defined on \mathbb{C}^{p+q+r}; however, $g_{1}: \mathbb{C}^{p+q+r}, 0 \rightarrow \mathbb{C}^{p^{\prime}+q+r}, 0$ is a germ of an immersion. Thus, $h_{i j}=g_{1}^{*} h_{i j}^{\prime \prime}$ for some $h_{i j}^{\prime \prime}$ on $\mathbb{C}^{p^{\prime}+q+r}, 0$. We also replace χ_{i} by $\chi_{i}^{\prime}=\sum h_{i j}^{\prime \prime} \eta_{j}$ where η_{j} also denotes its trivial extension to $\mathbb{C}^{\mathrm{p}^{\prime}+\mathrm{q}+\mathrm{r}}, 0$. Then (2.5) remains valid if we replace χ_{i} by χ_{i}^{\prime} since $\chi_{i}^{\prime} \circ g_{1}=\chi_{i} \circ g_{1}$. Also

$$
\begin{equation*}
\delta_{\mathrm{i}}(\mathrm{~F} \times \mathrm{id})=\chi_{\mathrm{i}}^{\prime} \circ(\mathrm{F} \times \mathrm{id}) \tag{2.6}
\end{equation*}
$$

Now, f_{1} is formed from g_{1} and $F \times$ id by fiber product. We make this explicit. Let

$$
\mathrm{H}_{1}: \mathbb{C}^{\mathrm{n}^{\prime}+\mathrm{p}+\mathrm{q}+\mathrm{r}}, 0 \longrightarrow \mathbb{C}^{2 \mathrm{p}^{\prime}+\mathrm{q}+\mathrm{r}}, 0
$$

be defined by $H_{1}\left(x^{\prime}, y, u, v\right)=\left(\overline{\mathrm{F}}\left(\mathrm{x}^{\prime}\right), \overline{\mathrm{g}}_{1}(\mathrm{y}, \mathrm{u}, \mathrm{v}), \mathrm{u}, \mathrm{v}\right)$, and

$$
\mathrm{H}: \mathbb{C}^{\mathrm{n}^{\prime}+\mathrm{p}+\mathrm{q}^{\prime}}, 0 \longrightarrow \mathbb{C}^{2 \mathrm{p}^{\prime}+\mathrm{q}_{, 0}}
$$

by $\mathrm{H}\left(\mathrm{x}^{\prime}, \mathrm{y}, \mathrm{u}\right)=\left(\mathrm{F}\left(\mathrm{x}^{\prime}\right), \overline{\mathrm{g}}(\mathrm{y}, \mathrm{u}), \mathrm{u}\right)$. Let,

$$
\begin{aligned}
\Delta_{1} & =\left\{\left(\mathrm{y}^{\prime}, \mathrm{y}^{\prime}, \mathrm{u}, \mathrm{v}\right): \mathrm{y}^{\prime} \in \mathbb{C}^{\mathrm{p}^{\prime}}\right\} \\
\Delta & =\left\{\left(\mathrm{y}^{\prime}, \mathrm{y}^{\prime}, \mathrm{u}\right): \mathrm{y}^{\prime} \in \mathbb{C}^{\mathrm{p}^{\prime}}\right\}
\end{aligned}
$$

Then, f_{1} and f are the restrictions of H_{1} and H

$$
\mathrm{H}_{1}: \mathrm{H}_{1}^{-1}\left(\Delta_{1}\right) \longrightarrow \Delta_{1} \quad \mathrm{H}: \mathrm{H}^{-1}(\Delta) \longrightarrow \Delta
$$

We wish to prove that $H_{1} \mid H_{1}^{-1}\left(\Delta_{1}\right)$ is an \mathscr{A}-trivial extension of $H \mid H^{-1}(\Delta)$.
Weclaim

$$
\begin{equation*}
\frac{\partial \bar{H}_{1}}{\partial v_{i}}=\left(0, \frac{\overline{\delta g}_{1}}{\partial v_{i}}\right)=-\left(\delta_{i}, \zeta_{\mathfrak{i}}\right) H_{1}-\gamma_{i}\left(H_{1}\right)+\left(\chi_{i}^{\prime}, \chi_{i}^{\prime}\right) \circ H_{1} \tag{2.7}
\end{equation*}
$$

for on the first component

$$
0=-\delta_{\mathrm{i}}(\mathrm{~F} \times \mathrm{id})-0+\chi_{\mathrm{i}}^{\prime} \circ(\mathrm{F} \times \mathrm{id})
$$

and on the second component

$$
\frac{\partial \bar{g}_{1}}{\partial v_{i}}=-\zeta_{i}\left(\bar{g}_{1}\right)-\gamma_{\mathrm{i}}\left(\bar{g}_{1}\right)+\chi_{\mathrm{i}}^{\prime} \circ \mathrm{g}_{1}
$$

which follow by (2.5) and (2.6). Also,

$$
\tilde{\eta}_{i}=\frac{\partial}{\partial v_{i}}+\gamma_{i}+\left(\chi_{i}^{\prime}, \chi_{i}^{\prime}\right)
$$

is tangent to Δ_{1}; and if we let

$$
\tilde{\xi}_{\dot{i}}=\frac{\partial}{\partial v_{i}}+\gamma_{i}+\left(\delta_{i}, \zeta_{i}\right)
$$

then

$$
\tilde{\xi}_{i}\left(H_{1}\right)=H_{1} \circ \tilde{\eta}_{i}
$$

Thus, $\tilde{\xi}_{i}$ is tangent to $H_{1}^{-1}\left(\Delta_{1}\right)$. Then, the restrictions $\tilde{\eta}_{i} \mid \Delta$ and $\tilde{\xi}_{i} \mid H_{1}^{-1}\left(\Delta_{1}\right)$ give the vector fields which provide the infinitesimal trivialization of $H_{1} \mid \mathrm{H}_{1}^{-1}\left(\Delta_{1}\right)$ as an extension of $\mathrm{H} \mid \mathrm{H}^{-1}(\Delta)$.

Now we are in a position to establish the equality of codimensions before we even define the algebraic homomorphism between normal spaces. It is enough to show: 1) if g is a \mathcal{K}_{V}-versal unfolding of g_{0} then the induced f is an \mathcal{A}-versal unfolding of g and 2) there is an \mathscr{A}-miniversal unfolding f of f_{0} induced by an unfolding g with $g \mathcal{K}_{V}$-versal. For by the versality theorem, 1) implies $\mathcal{A}_{e^{-\operatorname{codim}}\left(\mathrm{f}_{0}\right) \leq \mathcal{K}_{\mathrm{V}, \mathrm{e}}-\operatorname{codim}\left(\mathrm{g}_{0}\right) \text { while } 2 \text {) implies the }}$ reverseinequality.

Then, 1) is established by

Lemma 2.8: Let g be a \mathcal{K}_{V}-versal unfolding of g_{0}, then f is an \mathcal{A}-versal unfolding of $\mathrm{f}_{\mathbf{0}}$.

Proof: Let f_{1} be an extension of f. To prove that f is \mathscr{A}-versal, it is sufficient to prove that any such f_{1} is an \mathcal{A}-trivial extension of f. If we can show that f_{1} is induced by a g_{1} which is an extension of g , then, by the \mathcal{K}_{V}-versality of g, g, is a \mathcal{K}_{V}-trivial extension of g ; and by proposition $1.5, \mathrm{f}_{1}$ is an \mathcal{A}-trivial extension of f . We actually prove a variant of this where g_{0}, g and g_{1} are replaced by related germs h_{0}, h and h_{1}, which induce f_{0}, f and f_{1} from a larger stable unfolding so we can still apply proposition 1.5.

To define the h's, we enlarge the stable unfolding F to include explicitly all of the unfoldings under consideration. We represent F, as an unfolding $F(x, w)=(\bar{F}(x, w)$, w). The unfolding $g(y, u)=(\bar{g}(y, u), u), \bar{g}: \mathbb{C}^{p+q}, 0 \rightarrow \mathbb{C}^{p^{\prime}}, 0$ has the form $(y, w)=\bar{g}(y, u)=\left(\bar{g}^{\prime}(y, u)\right.$, $\bar{g}^{\prime \prime}(\mathrm{y}, \mathrm{u})$). Define a map $\varphi: \mathbb{C}^{p^{+q}}, 0 \longrightarrow \mathbb{C}^{\mathrm{p}^{\prime}+\mathrm{q}}, 0$ by $\varphi(\mathrm{y}, \mathrm{w}, \mathrm{u})=\left(\bar{g}^{\prime}(\mathrm{y}, \mathrm{u}), \overline{\mathrm{g}}^{\prime \prime}(\mathrm{y}, \mathrm{u})+\mathrm{w}, \mathrm{u}\right)$. It is easily checked that φ is a germ of a diffeomorphism, so that $F \times$ id pulls back via φ to an unfolding

$$
\mathrm{F}_{1}(\mathrm{x}, \mathrm{u}, \mathrm{w})=\left(\overline{\mathrm{F}}_{1}(\mathrm{x}, \mathrm{u}, \mathrm{w}), \mathrm{u}, \mathrm{w}\right)
$$

and that

$$
\overline{\mathrm{F}}_{1}(\mathrm{x}, \mathrm{u}, 0)=\overline{\mathrm{f}}(\mathrm{x}, \mathrm{u}) \quad \text { and } \quad \overline{\mathrm{F}}_{1}(\mathrm{x}, 0, \mathrm{w})=\overline{\mathrm{F}}(\mathrm{x}, \mathrm{w})
$$

Consider the unfolding

$$
\mathrm{F}_{2}(\mathrm{x}, \mathrm{u}, \mathrm{w}, \mathrm{v})=\left(\overline{\mathrm{F}}_{1}(\mathrm{x}, \mathrm{u}, \mathrm{w})-\overline{\mathrm{f}}(\mathrm{x}, \mathrm{u})+\overline{\mathrm{f}}_{1}(\mathrm{x}, \mathrm{u}, \mathrm{v}), \mathrm{u}, \mathrm{w}, \mathrm{v}\right)
$$

Then

$$
\begin{equation*}
\left.\mathrm{F}_{2}(\mathrm{x}, \mathrm{u}, 0, v)=\overrightarrow{(f}_{1}(\mathrm{x}, \mathrm{u}, \mathrm{v}), \mathrm{u}, 0, \mathrm{v}\right) \quad \text { and } \quad \mathrm{F}_{2}(\mathrm{x}, 0, \mathrm{w}, 0)=(\overline{\mathrm{F}}(\mathrm{x}, \mathrm{w}), 0, \mathrm{w}, 0) \tag{2.9}
\end{equation*}
$$

Since F is stable, by (2.9) and the infinitesimal criterion of Mather, F_{2} is stable. Then, we define $\mathrm{h}_{0}: \mathbb{C}^{\mathrm{p}}, 0 \rightarrow \mathbb{C}^{\mathrm{p}^{\prime}+\mathrm{q}+\mathrm{r}}, 0, \overline{\mathrm{~h}}: \mathbb{C}^{\mathrm{p}+\mathrm{q}}, 0 \rightarrow \mathbb{C}^{\mathrm{p}^{\prime}+\mathrm{q}+\mathrm{r}}, 0$, and $\bar{h}_{1}: \mathbb{C}^{\mathrm{p+q}+\mathrm{r}}, 0 \rightarrow \mathbb{C}^{\mathrm{p}^{\prime}+\mathrm{q}+\mathrm{r}}, 0$ by $h_{0}(y)=(y, 0,0,0), \bar{h}(y, u)=(y, u, 0,0)$, and $\bar{h}_{1}(y, u, v)=(y, u, 0, v)$. By (2.9) we see that \bar{h} pulls back F_{2} to give f, \bar{h}_{1} pulls back F_{2} to give f_{1} and h_{1} is an extension of h. If we knew that h_{1} were a $K_{V^{\prime \prime}}$,-trivial extension of h, where $V^{\prime \prime}=D\left(F_{2}\right)$, then by proposition 1.5 we could draw the desired conclusion.

To see that it is, we define $G_{0}: \mathbb{C}^{p}, 0 \rightarrow \mathbb{C}^{p^{\prime}+q+r}, 0$ by $G_{0}(y)=(y, 0,0)$ and the unfolding $\mathrm{G}(\mathrm{y}, \mathrm{u})=(\overline{\mathrm{G}}(\mathrm{y}, \mathrm{u}), \mathrm{u})$ by $\overline{\mathrm{G}}(\mathrm{y}, \mathrm{u})=(\overline{\mathrm{g}}(\mathrm{y}, \mathrm{u}), \mathrm{u}, 0)$. Then, $\mathrm{g}_{0}=\pi_{*} \mathrm{G}_{0}$ and $\overline{\mathrm{g}}=\pi_{*} \overline{\mathrm{G}}$ for π : $\mathbb{C}^{\mathrm{p}^{\prime}+\mathrm{q}+\boldsymbol{r}}, 0 \rightarrow \mathbb{C}^{\mathrm{p}^{\prime}}, 0$ the projection. Thus, by proposition $1.5, G$ is a \mathcal{K}_{V}, -versal unfolding of G_{0} where $\mathrm{V}^{\prime}=\mathrm{V} \times \mathbb{C}^{\mathrm{q}+\mathrm{r}}$. Also, $(\varphi \times \mathrm{id})_{*} \mathrm{~h}=\mathrm{G},(\varphi \times \mathrm{id})_{*} \mathrm{~h}_{0}=\mathrm{G}_{0}$, and $\varphi \times \operatorname{id}\left(\mathrm{V}^{\prime \prime}\right)=\mathrm{D}(\mathrm{F} \times \mathrm{id})=\mathrm{V}^{\prime}$. Since $\varphi \times$ id is a diffeomorphism, h is a $\mathcal{K}_{\mathrm{V}^{\prime \prime}}$-versal unfolding of h_{0} if and only if G is a $K_{V^{\prime}}$-versal unfolding of G_{0}, which it is. Hence, h_{1} is a $\mathcal{K}_{V^{\prime \prime}}$-trivial extension of h; and thus, f_{1} is an \mathcal{A}-trivial extension of f.

For 2) we let $f(x, u)=(\bar{f}(x, u), u)$ denote an \mathcal{A}-versal unfolding of f_{0} with $f: \mathbb{C}^{p+q}, 0 \rightarrow \mathbb{C}^{n+q}, 0$. We define an unfolding of $g_{0}(y)=y$ by $\bar{g}(y, u)=(y, u)$.

Lemma 2.10: g is a \mathcal{K}_{V}-versal unfolding of g_{0}, where $\mathrm{V}=\mathrm{D}(\mathrm{f})$.
Proof: Since

$$
\mathrm{T} \mathcal{K}_{\mathrm{e}} \cdot \mathrm{f}_{0}+\left\langle\frac{\partial}{\partial y_{1}}, \ldots, \frac{\partial}{\partial y_{\mathrm{p}}}\right\rangle \supseteq \mathrm{T} \mathcal{A}_{\mathrm{e}} \cdot \mathrm{f}_{0}
$$

it follows that the \mathcal{A}-versal unfolding f is also a stable unfolding of f_{0}. Then, we may use f for our stable unfolding F .

Let g_{1} be an extension of g, with additional parameters $v \in \mathbb{C}^{r}$. Define $\varphi: \mathbb{C}^{\mathrm{p}+\mathrm{q}+\mathrm{r}}, 0 \rightarrow \mathbb{C}^{\mathrm{p}+\mathrm{q}+\mathrm{r}}, 0$ by $\varphi(\mathrm{y}, \mathrm{u}, \mathrm{v})=\left(\bar{g}_{1}(\mathrm{y}, \mathrm{u}, \mathrm{v}), v\right)$. As g_{1} is an extension of g , $\bar{g}_{1}(\mathrm{y}, \mathrm{u}, 0)=(\mathrm{y}, \mathrm{u})$. Hence, φ is a germ of a diffeomorphism by the inverse function theorem. We may pull back $f x$ id by φ to obtain an unfolding $f_{1}: \mathbb{C}^{n+q+r}, 0 \rightarrow \mathbb{C}^{p+q+r}, 0$. Since $\varphi(\mathrm{y}, \mathrm{u}, 0)=(\mathrm{y}, \mathrm{u}, 0), \bar{f}_{1}(\mathrm{x}, \mathrm{u}, 0)=\overline{\mathrm{f}}(\mathrm{x}, \mathrm{u})$. Note even though f_{1} is a pull-back of a trivial unfolding $\mathrm{f} \times$ id, the pull-back is not in the usual sense of unfoldings; hence, the unfolding need not be an \mathcal{A}-trivial extension f. However, f_{1} is an extension of the unfolding f which is \mathcal{A}-versal. Hence, f_{1} is an \mathcal{A}-trivial extension of f by the versality theorem.

By the infinitesimal criterion, there exist vector fields of the form

$$
\chi_{i}=\frac{\partial}{\partial v_{i}}+\gamma_{i}+\zeta_{i} \quad \delta_{i}=\frac{\partial}{\partial v_{i}}+\xi_{i}+\zeta_{i} \quad 1 \leq i \leq r
$$

where $\gamma_{i} \in \mathcal{C}_{\mathrm{y}, \mathrm{u}, \mathrm{v}}\left\{\frac{\partial}{\partial \mathrm{y}_{\mathrm{i}}}\right\}, \xi_{\mathrm{i}} \in \mathcal{C}_{\mathrm{x}, \mathrm{u}, \mathrm{v}}\left\{\frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}\right\}, \zeta_{\mathrm{i}} \in \mathcal{C}_{\mathrm{u}, \mathrm{v}}\left\{\frac{\partial}{\partial \mathrm{u}_{\mathrm{j}}}\right\}$ and such that

$$
\delta_{i}\left(f_{1}\right)=\chi_{i} \circ f_{1}
$$

Thus, χ_{i} is f_{1}-liftable and

$$
\frac{\partial}{\partial v_{i}}=\chi_{i}-\gamma_{i}-\zeta_{i}
$$

Consider the unfoldings h and h_{1} of $h_{0}(y)=(y, 0,0)$ with $\bar{h}(y, u)=(y, u, 0)$ and $\bar{h}_{1}(y, u, v)=$ ($\mathrm{y}, \mathrm{u}, \mathrm{v}$).

$$
\chi_{i} \circ \overline{\mathrm{~h}}_{1}=\chi_{\mathrm{i}}, \quad \zeta_{i}\left(\overline{\mathrm{~h}}_{1}\right)=\zeta_{\mathrm{i}}, \quad \gamma_{\mathrm{i}}\left(\overline{\mathrm{~h}}_{1}\right)=\gamma_{\mathrm{i}}, \quad \text { and } \quad \frac{\partial \overline{\mathrm{h}}_{1}}{\partial \mathrm{v}_{\mathrm{i}}}=\frac{\partial}{\partial \mathrm{v}_{\mathrm{i}}}
$$

Hence,

$$
\frac{\partial \overline{\mathrm{h}}_{1}}{\partial v_{i}}=-\gamma_{\mathrm{i}}\left(\overline{\mathrm{~h}}_{1}\right)-\zeta_{i}\left(\overline{\mathrm{~h}}_{1}\right)+\chi_{\mathrm{i}} \circ \overline{\mathrm{~h}}_{1} \quad 1 \leq \mathrm{i} \leq \mathrm{r}
$$

Hence, h_{1} is a K_{V},-trivial extension of h where $V^{\prime}=D\left(f_{1}\right)$.
Now, $\varphi\left(\mathrm{D}\left(\mathrm{f}_{1}\right)\right)=\mathrm{D}(\mathrm{f}) \times \mathbb{C}^{\mathrm{r}}=\mathrm{V} \times \mathbb{C}^{\mathrm{r}}$ and $\varphi(\mathrm{y}, \mathrm{u}, 0)=(\mathrm{y}, \mathrm{u}, 0)$. Thus, $\varphi_{*} \mathrm{~h}_{1}$ is a $\mathcal{K}_{V \times \mathbb{C}^{r}}$ trivial extension of $\varphi_{*} h$ by proposition 1.5 and hence $g_{1}=\pi_{*} \varphi_{*} h_{1}$ is a \mathcal{K}_{V}-trivial extension of $g=\pi_{*} \varphi_{*}$ h. As g_{1} was an arbitrary extension of g, g is \mathcal{K}_{V}-versal.

Now, if g is a \mathcal{K}_{V}-miniversal unfolding of g_{0} on q parameters, then the induced f is an \mathcal{A}-versal unfolding of f_{0} by lemma 2.8 . Thus, by the versality theorem, $\mathcal{K}_{\mathrm{V}, \mathrm{e}}$ - $\operatorname{codim}\left(\mathrm{g}_{0}\right)=\mathrm{q} \geq \mathcal{A}_{\mathrm{e}} \mathrm{e}^{-\operatorname{codim}\left(\mathrm{f}_{0}\right)}$. On the other hand, if f is an $\mathcal{A}_{\mathrm{e}}-$ miniversal unfolding of f_{0}, then the unfolding of g_{0} defined in lemma 2.10 is \mathcal{K}_{V}-versal so the inequality is reversed. We conclude,

Theorem 1: With the preceding notation

$$
\mathcal{A}_{\mathrm{e}}-\operatorname{codim}\left(\mathrm{f}_{0}\right)=\mathcal{K}_{\mathrm{V}, \mathrm{e}}-\operatorname{codim}\left(\mathrm{g}_{0}\right)
$$

§ 3. Isomorphism of Normal Spaces

As in the preceding section, we let $\mathrm{f}_{0}: \mathbb{C}^{\mathrm{n}}, 0 \rightarrow \mathbb{C}^{\mathrm{P}}, 0$ have a stable unfolding $\mathrm{F}: \mathbb{C}^{\mathrm{n}^{\prime}}, 0 \rightarrow \mathbb{C}^{\mathrm{p}^{\prime}, 0}$ with $\mathrm{g}_{0}: \mathbb{C}^{\mathrm{p}}, 0 \rightarrow \mathbb{C}^{\mathfrak{p}^{\prime}}, 0$ denoting the inclusion of \mathbb{C}^{p}. By a choice of local coordinates we may assume $\mathrm{F}(\mathrm{x}, \mathrm{u})=(\overline{\mathrm{F}}(\mathrm{x}, \mathrm{u}), \mathrm{u})=(\mathrm{y}, \mathrm{u})$ and $\mathrm{g}_{0}(\mathrm{y})=(\mathrm{y}, 0)$.

In this section we shall define an isomorphism between $N \mathcal{K}_{V, e} \cdot \mathrm{~g}_{0}$ and $\mathrm{N} \mathcal{A}_{e} \cdot \mathrm{f}_{0}$ when both (i.e. either) are finite dimensional. For $\zeta \in \theta\left(g_{0}\right)$, we may represent $\zeta=\left(\zeta_{1}, \zeta_{2}\right)$ where ζ_{1} denotes the y-component and ζ_{2} the u-component of ζ. We define a C_{y}-linear homomorphism $\Phi: \theta\left(\mathrm{g}_{0}\right) \rightarrow \theta\left(\mathrm{f}_{0}\right)$ by

$$
\Phi(\zeta)=-\zeta_{1} \circ \mathrm{f}_{0}+\mathrm{d}_{\mathrm{u}} \overline{\mathrm{~F}}(\mathrm{x}, 0)\left(\zeta_{2}\right) \circ \mathrm{f}_{0}
$$

Theorem 2: Φ induces an isomorphism of C_{y}-modules

$$
\bar{\Phi}: N \mathcal{K}_{V, e} \cdot g_{0} \xrightarrow{\sim} N \mathcal{A}_{e} \cdot f_{0}
$$

Proof: The proof of this theorem will occupy the rest of this section.
Given a 1-parameter unfolding of g_{0}, which we denote by $g_{t}(y)$ instead of $\bar{g}(y, t)$, we can associate to it an element of $\theta\left(g_{0}\right)$, namely $\zeta=\left.\frac{\partial g_{t}}{\partial t}\right|_{t=0}$. We shall explicitly show that $\Phi(\zeta)$ is the corresponding element of $\theta\left(f_{0}\right)$ obtained from the induced deformation f_{t} of f_{0} which is defined as a fiber product

$$
\begin{equation*}
f_{t}: X_{t}=\left\{(x, u, y): F(x, u)=g_{t}(y)\right\} \xrightarrow{p r} \mathbb{C}^{p} \tag{3.1}
\end{equation*}
$$

with $\operatorname{pr}(\mathrm{x}, \mathrm{u}, \mathrm{y})=\mathrm{y}$.
We write $g_{t}(y)=\left(g_{1 t}(y), g_{2 t}(y)\right)=(y, u)$ so that $g_{10}(y)=y, g_{20}(y) \equiv 0$. Then, (3.1) defines X_{t} by

$$
\overline{\mathrm{F}}(\mathrm{x}, \mathrm{u})=\mathrm{g}_{1 \mathrm{t}}(\mathrm{y}) \quad \text { and } \quad \mathrm{u}=\mathrm{g}_{2 \mathrm{t}}(\mathrm{y}) ;
$$

or x and y are related by

$$
\begin{equation*}
\mathrm{g}_{1 \mathrm{t}}(\mathrm{y})-\overline{\mathrm{F}}\left(\mathrm{x}, \mathrm{~g}_{2 \mathrm{t}}(\mathrm{y})\right)=0 \tag{3.2}
\end{equation*}
$$

Let $\mathrm{H}(\mathrm{x}, \mathrm{y}, \mathrm{t})$ denote the function on the left hand side of (3.2). We apply the implicit function theorem to parametrize $\mathrm{H}^{-1}(0)$.

$$
\begin{equation*}
d_{y} H(0,0,0)=d_{y} g_{10}(0)-d_{u} \bar{F}(0,0) \circ d_{20}(0) \tag{3.3}
\end{equation*}
$$

Since $g_{10}=$ id and $g_{20} \equiv 0$, we see from (3.3) that $d_{y} H(0,0,0)=I$. Thus, by the implicit function theorem, we may represent $\mathrm{H}^{-1}(0)$ as the graph of y as a function of (x, t), $y=\psi_{t}(x)$.

Then, $X_{t}=\left\{(x, u, y): u=g_{2 t}(y), y=\psi_{t}(x)\right\}$. Let $\varphi_{t}(x)=g_{2 t}{ }^{\circ} \psi_{t}(x)$ so that $\varphi_{0}(\mathrm{x})=\mathrm{g}_{20} \circ \Psi_{0}(\mathrm{x}) \equiv 0$. Also, $\mathrm{g}_{10}=$ id so for small $\mathrm{t}, \mathrm{g}_{1 \mathrm{t}}$ is a germ of a diffeomorphism. Hence, by (3.2)

$$
y=g_{1 t} t^{-1} \circ \bar{F}\left(x, g_{2 t}(y)\right)
$$

Thus, by the above description of X_{t} and (3.1),

$$
\mathrm{y}=\psi_{\mathrm{t}}(\mathrm{x})=\mathrm{g}_{1 \mathrm{t}}{ }^{-1} \circ \overline{\mathrm{~F}}\left(\mathrm{x}, \varphi_{\mathrm{t}}(\mathrm{x})\right)
$$

and so

$$
\begin{equation*}
f_{t}(x)=g_{1 t}{ }^{-1} \circ \bar{F}\left(x, \varphi_{t}(x)\right) . \tag{3.4}
\end{equation*}
$$

Thus, by the chain rule

$$
\begin{equation*}
\left.\frac{\partial f_{t}}{\partial t}\right|_{t=0}=\left.\frac{\partial g_{1 t}^{-1}}{\partial t}\right|_{t=0} \circ \bar{F}\left(x, \varphi_{0}(x)\right)+\left.\operatorname{dg}_{10}^{-1} \circ \frac{\partial \bar{F}}{\partial \mathrm{u}}\left(x, \varphi_{0}(x)\right) \frac{\partial \varphi_{t}}{\partial t}\right|_{t=0} \tag{3.5}
\end{equation*}
$$

From $g_{1 t}^{-1} \circ g_{1 t}=i d$ we obtain

$$
\begin{equation*}
\left.\frac{\partial g_{1 t}^{-1}}{\partial t}\right|_{t=0} \circ g_{10}+\left.\operatorname{dg}_{10}^{-1} \frac{\partial g_{1 t}}{\partial t}\right|_{t=0}=0 \tag{3.6}
\end{equation*}
$$

Since $g_{10}=\mathrm{id}$, (3.6) implies

$$
\left.\frac{\partial g_{1 t}^{-1}}{\partial t}\right|_{t=0}=-\left.\frac{\partial g_{1 t}}{\partial t}\right|_{t=0}
$$

Also, $\varphi_{0}(x)=0$ and $\bar{F}(x, 0)=f_{0}(x)$ so (3.5) becomes

$$
\begin{equation*}
\left.\frac{\partial f_{t}}{\partial t}\right|_{t=0}=-\left.\frac{\partial g_{1 t}}{\partial t}\right|_{t=0} \circ f_{0}(x)+\left.\frac{\partial \bar{F}}{\partial u}(x, 0) \frac{\partial \varphi_{t}}{\partial t}\right|_{t=0} \tag{3.7}
\end{equation*}
$$

Then,

$$
\begin{gathered}
\varphi_{t}=g_{2 t} \circ \psi_{t}, \text { or } \\
\varphi_{t}(x)=g_{2 t} \circ g_{1 t}^{-1} \circ \bar{F}\left(x, \varphi_{t}(x)\right)
\end{gathered}
$$

Hence

$$
\begin{equation*}
\left.\frac{\partial \varphi_{t}}{\partial t}\right|_{t=0}=\left.\frac{\partial g_{2 t}}{\partial t}\right|_{t=0} \circ g_{10}^{-1} \circ \overline{\mathrm{~F}}\left(\mathrm{x}, \varphi_{0}(\mathrm{x})\right)+\mathrm{dg}_{20} \circ(-) \tag{3.8}
\end{equation*}
$$

Since g_{20}, and hence dg_{20}, equals 0 , the second term vanishes. Thus, (3.8) becomes

$$
\left.\frac{\partial \varphi_{t}}{\partial t}\right|_{t=0}=\left.\frac{\partial g_{2 t}}{\partial t}\right|_{t=0} \circ f_{0}(x)
$$

Substituting into (3.7) yields

$$
\begin{equation*}
\left.\frac{\partial f_{t}}{\partial t}\right|_{t=0}=-\left.\frac{\partial g_{1 t}}{\partial t}\right|_{t=0} \circ f_{0}(x)+d_{u} \bar{F}(x, 0)\left(\left.\frac{\partial g_{2 t}}{\partial t}\right|_{t=0}\right) \circ f_{0}(x) \tag{3.9}
\end{equation*}
$$

If

$$
\zeta=\left.\frac{\partial g_{t}}{\partial t}\right|_{t=0}=\left(\left.\frac{\partial g_{1 t}}{\partial t}\right|_{t=0},\left.\frac{\partial g_{2 t}}{\partial t}\right|_{t=0}\right)=\left(\zeta_{1}, \zeta_{2}\right)
$$

then, we obtain from (3.9)

$$
\begin{equation*}
\left.\frac{\partial f_{t}}{\partial t}\right|_{t=0}=-\zeta_{1} \circ f_{0}+d_{u} \bar{F}(x, 0)\left(\zeta_{2}\right) \circ f_{0} \tag{3.10}
\end{equation*}
$$

We see that $\Phi(\zeta)$ is equal to the right hand side of (3.10):
(3.11)

$$
\Phi: \theta\left(\mathrm{g}_{0}\right) \longrightarrow \theta\left(\mathrm{f}_{0}\right)
$$

$$
\Phi(\zeta)=-\zeta_{1} \circ f_{0}+d_{u} \bar{F}(x, 0)\left(\zeta_{2}\right) \circ f_{0}
$$

Next, if $\zeta \in T K_{V, e} \cdot g_{0}$, then $\zeta=\left.\frac{\partial g_{t}}{\partial t}\right|_{t=0}$ for g_{t} a \mathcal{K}_{V}-trivial deformation. By proposition 2.4, f_{t} is an \mathcal{A}-trivial deformation of f_{0}. Thus,

$$
\Phi(\zeta)=\left.\frac{\partial f_{t}}{\partial t}\right|_{t=0} \in T \not A_{e} \cdot f_{0}
$$

Thus,

$$
\Phi\left(\mathrm{T} \mathcal{K}_{V, \mathrm{e}} \cdot \mathrm{~g}_{0}\right) \subset \mathrm{T} \mathcal{A}_{\mathrm{e}} \cdot \mathrm{f}_{0}
$$

and induces a C_{y}-module homomorphism.

$$
\begin{equation*}
\bar{\Phi}: N \mathcal{K}_{,, \mathrm{e}} \cdot \mathrm{~g}_{0} \longrightarrow \mathrm{~N} \mathscr{A}_{\mathrm{e}} \cdot \mathrm{f}_{0} . \tag{3.12}
\end{equation*}
$$

We now show this is an isomorphism.
Given $\xi \in \theta\left(f_{0}\right)$, then $\xi=\frac{\partial f_{t}}{\partial t} l_{t=0}$ with f_{t} induced, up to \mathcal{A}-equivalence, by an unfolding g_{t}. Thus, g_{t} induces f_{t}^{\prime} with $f_{t} \mathcal{A}$-equivalent to f_{t}^{\prime}, say $f_{t}=\Psi_{t} f_{t}^{\prime} \circ \varphi_{t}$ with $\Psi_{0}=$ id, $\varphi_{0}=$ id. We compute

$$
\begin{aligned}
\left.\frac{\partial f_{t}}{\partial t}\right|_{t=0} & =\left.\frac{\partial f_{t}^{\prime}}{\partial t}\right|_{t=0}+\left.\frac{\partial \psi_{t}}{\partial t}\right|_{t=0} \circ f_{0}^{\prime}-d f_{0}^{\prime}\left(\left.\frac{\partial \varphi_{t}}{\partial t}\right|_{t=0}\right) \\
& =\left.\frac{\partial f_{t}^{\prime}}{\partial t}\right|_{t=0}+\eta \circ f_{0}-\xi\left(f_{0}\right) .
\end{aligned}
$$

Thus,

$$
\xi=\left.\frac{\partial f_{t_{t}}}{\partial t}\right|_{t=0} \equiv \Phi(\zeta) \bmod T \mathscr{A}_{\mathrm{e}} \cdot \mathrm{f}_{0}
$$

Hence, $\bar{\Phi}$ is surjective.
By Theorem 1, the spaces in (3.12) have the same dimension as vector spaces; as $\bar{\Phi}$ is surjective it is an isomorphism.

We can now refine our earlier results relating the versality of g_{0} and f_{0}.

Corollary 1: With the preceding notation, let g be an unfolding of g_{0} and let f denote the induced unfolding of f 0 . Then, f is \mathcal{A}-versal if and only if g is \mathcal{K}_{V}-versal.

Proof: The proof of the theorem shows that for each i ,

$$
\bar{\Phi}\left(\frac{\partial \mathrm{g}}{\partial \mathrm{u}_{\mathrm{i}}}\right)=\frac{\partial \mathrm{f}}{\partial \mathrm{u}_{\mathrm{i}}}
$$

Hence,the corollary follows by the versality theorem and theorem 2.

We also obtain the analog of theorem 2 for multi-germs, which follows by the same proofs except applied to multi-germs.

Let $\mathrm{f}_{0} ; \mathbb{C}^{\boldsymbol{n}}, S \rightarrow \mathbb{C}^{\mathbf{p}}, 0$ have a stable unfolding $\mathrm{F}: \mathbb{C}^{\mathfrak{n}^{\prime}, S} \rightarrow \mathbb{C}^{\mathrm{p}^{\prime}, 0}$ with
 homomorphism for $\theta\left(\mathrm{f}_{0}\right)$ denoting the module of vector fields along the multi-germ f_{0}. Then, Φ also induces an isomorphism in this case.

Theorem 3: i) The multi-germ f_{0} has finite \mathcal{A}-codimension if and only if g_{0} has finite \mathcal{X}_{V}-codimension;
ii) in the case of i) Φ induces an isomorphism

$$
\bar{\Phi}: N K_{V, e^{\cdot}} g_{0} \sim N \mathcal{A}_{e} \cdot f_{0} .
$$

§4 Several Consequences

We deduce consequences of the main theorems for: a) placing Mond's formula in a more general context as an analogue of Milnor's formula but for nonlinear sections of nonisolated hypersurface singularities and b) verifying that a method for computing the versality discriminant of an unfolding of a hypersurface singularity (given in [DG] for the Pham example) is valid in general.

Nonlinear Sections of Hypersurface Singularities

Let $\mathrm{V}, 0 \subset \mathbb{C}^{\mathrm{m}}, 0$ be a hypersurface germ and let $\mathrm{g}_{0}: \mathbb{C}^{\mathrm{P}}, 0 \longrightarrow \mathbb{C}^{\mathrm{m}}, 0$ be a germ of an immersion. We can define two numbers associated to the nonlinear section g_{0}, a number defined algebraically, which measures the codimension of g_{0}, and a number defined geometrically, which is the analogue of the Milnor number for $g_{t}\left(\mathbb{C}^{P}\right) \cap V$ with g_{t} a perturbation of g_{0}. If we ask when these two numbers are equal, it turns out that not only can Mond's formula be interpreted as an equality of these numbers but, in this context, it is related to other formulas which involve seemingly unrelated numbers such as the multiplicity of the discriminant for a versal deformation and a special case of Greuel's and Lê's formula for the Milnor number of isolated complete intersection singularities [G], [L].

The algebraically defined number associated to g_{0} is its \mathcal{K}_{V}-codimension

$$
v_{\mathrm{alg}}\left(\mathrm{~g}_{0}\right)=\mathcal{K}_{\mathrm{V}, \mathrm{e}}-\operatorname{codim}\left(\mathrm{g}_{0}\right)
$$

For this number to be finite we must assume that g_{0} is transverse to V in a punctured neighborhood of 0 . For the geometrically defined number, we consider a one-parameter family of germs g_{t} such that g_{t} is transverse to V for $t \neq 0$. Here we have to use a weaker notion of transversality than that used in § 1, i.e. we choose a Whitney stratification of V with the property that all $\eta \in \theta_{\mathrm{V}}$ are tangent to the strata and require transversality to all of the strata. Then the geometric number which is the analogue of the Milnor number is

$$
v_{\text {geom }}\left(g_{0}\right)=\left|\chi\left(g_{t}\left(\mathbb{C}^{p}\right) \cap V \cap B_{\varepsilon}\right)-1\right| .
$$

Here $\chi\left(\mathrm{g}_{\mathrm{t}}\left(\mathbb{C}^{\mathrm{p}}\right) \cap \mathrm{V} \cap \mathrm{B}_{\varepsilon}\right)$ is the topological Euler characteristic, B_{ε} is a ball about 0 of radius ε and ε and t have to chosen appropriately small. This geometric number can be shown to be well-defined. Mond's formula and other related formulas suggest the following.

BASIC QUESTION : Suppose both V and g_{0} are weighted homogeneous for the same weights on $\mathbb{C}^{\mathbf{m}}$. When do we have the analogue of Milnor's formula, namely, when does (4.1) hold?

$$
\begin{equation*}
v_{\mathrm{alg}}\left(\mathrm{~g}_{0}\right)=v_{\text {geom }}\left(\mathrm{g}_{0}\right) \tag{4.1}
\end{equation*}
$$

We consider some cases where it is presently known to hold.

1) Let $V=D(F)=\operatorname{image}(F)$ where $F: \mathbb{C}^{n}, 0 \longrightarrow \mathbb{C}^{n+1}, 0$ is a stable germ, and let $\mathrm{g}_{0}: \mathbb{C}^{3}, 0 \longrightarrow \mathbb{C}^{\mathrm{n}+1}, 0$ denote a germ of an immersion transverse to F with f_{0} the pullback. By theorem 2

$$
\mathcal{A}_{\mathrm{e}}-\operatorname{codim}\left(\mathrm{f}_{0}\right)=\mathcal{K}_{\mathrm{V}, \mathrm{e}^{-\operatorname{codim}}\left(\mathrm{g}_{0}\right)}=\mathrm{v}_{\mathrm{alg}}\left(\mathrm{~g}_{0}\right)
$$

If g_{t} is a family such that $g_{t}\left(\mathbb{C}^{3}\right)$ is transverse to V for $t \neq 0$, then by the proof of proposition 2.3, the pull-back family f_{t} is stable for $t \neq 0$. Then $f_{t}\left(\mathbb{C}^{2}\right) \cap B_{E}=g_{t}\left(\mathbb{C}^{3}\right) \cap V \cap B_{E}$. Thus, $v_{\text {geom }}\left(g_{0}\right)=\left|\chi\left(f_{t}\left(\mathbb{C}^{2}\right) \cap B_{\mathcal{E}}\right)-1\right|$. Thus, by the result of de Jong and van Straten [JS], (4.1) holds when g_{0} and F are weighted homogeneous for the same weights on \mathbb{C}^{n+1}.
2) Let $V=D(F)$ where $F: \mathbb{C}^{n+q}, 0 \longrightarrow \mathbb{C}^{1+q}, 0$ is a versal unfolding of a weighted homogeneous hypersurface singularity defined by f_{0} (here $q=\tau-1$). Also, let $g_{0}: \mathbb{C}, 0 \longrightarrow$ $\mathbb{C}^{1+q}, 0$ denote the germ $g_{0}(y)=(y, 0)$. Then, g_{0} is transverse to F with f_{0} the pullback. We saw in example 1.3 that

$$
\mathcal{A}_{\mathrm{e}}-\operatorname{codim}\left(\mathrm{f}_{0}\right)=\mathcal{K}_{\mathrm{V}, \mathrm{e}^{-\operatorname{codim}}\left(\mathrm{g}_{0}\right)\left(=v_{\mathrm{alg}}\left(\mathrm{~g}_{0}\right)\right)=\tau-1}
$$

If g_{t} is transverse to V for t small $\neq 0$ then $g_{t}(\mathbb{C}) \cap V \cap B_{\varepsilon}$ consists of $m(V)$ points , where $m(V)$ denotes the multiplicity of V. However, $m(V)=\mu$; see e.g. [T]. Hence, $v_{\text {geom }}\left(g_{0}\right)=\mu-1$. Since f_{0} is weighted homogeneous, $\mu=\tau$ so again we have equality in (1.4).
3) Let $V=D(F)=\operatorname{image}(F)$ where $F: \mathbb{C}^{n}, 0 \longrightarrow \mathbb{C}^{\mathrm{n}+1}, 0$ is the stable unfolding of the germ $\mathrm{f}_{0}(\mathrm{x})=\left(\mathrm{x}^{\mathrm{n}}, \mathrm{x}^{\mathrm{m}}\right)$ with $(\mathrm{n}, \mathrm{m})=1$. Likewise, let $\mathrm{g}_{0}: \mathbb{C}^{2}, 0 \longrightarrow \mathbb{C}^{\mathrm{n}+1}, 0$ denote the germ of an immersion $g_{0}\left(y_{1}, y_{2}\right)=\left(y_{1}, y_{2}, 0\right)$ transverse to F with f_{0} the pullback. Then, a simple calculation shows that $\mathcal{A}_{\mathrm{e}}-\operatorname{codim}\left(\mathrm{f}_{0}\right)=\delta(C)$ where C is the image curve $\mathrm{f}_{0}(\mathbb{C})$ defined by $y_{1}{ }^{m}-y_{2}{ }^{n}=0$. Also, f_{0} can be deformed to a stable germ f_{t} so that the image curve $f_{t}(\mathbb{C})$ has $\delta(C)$ double points and $f_{t}(\mathbb{C}) \cap B_{\mathcal{E}}=g_{t}\left(\mathbb{C}^{2}\right) \cap V \cap B_{\mathcal{E}}$ for g_{t} the deformation of g_{0} inducing f_{t}. Hence,

$$
v_{\text {geom }}\left(g_{0}\right)=\left|\chi\left(f_{t}(\mathbb{C}) \cap B_{\varepsilon}\right)-1\right|=|(1-\delta)-1|=\delta(C)
$$

Lastly we consider a hypersurface which is not the discriminant of a stable germ.
4) Let $V, 0$ be an isolated hypersurface singularity defined by a weighted homogeneous germ $\mathrm{f}_{0}: \mathbb{C}^{\mathrm{n}}, 0 \longrightarrow \mathbb{C}, 0$. Let $\mathrm{g}_{0}: \mathbb{C}^{\mathrm{n}-1}, 0 \longrightarrow \mathbb{C}^{\mathrm{n}}, 0$ be a germ of an immersion which is weighted homogeneous for the same weights and for which $g_{0}\left(\mathbb{C}^{n-1}\right)$ is transverse to V in a punctured neighbourhood of 0 . By a weighted homogeneous change of coordinates we may assume that g_{0} is a linear embedding $g_{0}\left(x_{1}, \ldots, x_{n-1}\right)=\left(x_{1}, \ldots, x_{n-1}, 0\right)$. Now, θ_{V} is generated by $\left\{\zeta_{i j}=\frac{\partial x_{0}}{\partial x_{i}} \frac{\partial}{\partial x_{i}}-\frac{\partial \zeta_{0}}{\partial x_{i}} \frac{\partial}{\partial x_{i}}, e\right\}$ where e is the Euler vector field. Thus,

$$
\begin{aligned}
& N_{K_{V, e^{\prime}} g_{0}}=C_{x^{\prime}}\left\{\frac{\partial}{\partial x_{i}}\right\} /\left(c_{x^{\prime}}\left\{\frac{\partial}{\partial x_{i}}, \mathrm{j}=1, \ldots, \mathrm{n}-1\right\}+\mathcal{C}_{\mathrm{x}^{\prime}}\left\{\zeta_{\mathrm{ij}}, \mathrm{e}\right\}\right. \\
& =c_{x^{\prime}}\left\{\frac{\partial}{\partial x_{n}}\right\} /\left(c_{x^{\prime}}\left\{\frac{\partial f_{0}}{\partial x_{i}} \cdot \frac{\partial}{\partial x_{n}}, j=1, \ldots, n-1\right\}\right. \\
& \text { (since e } \circ g_{0}=\sum_{j=1}^{n-1} x_{j} \cdot \frac{\partial}{\partial x_{j}} \text {) } \\
& =C_{x^{\prime}} /\left(\frac{\partial_{0}}{\partial x_{i}} I_{x_{n}=0}, j=1, \ldots, n-1\right) .
\end{aligned}
$$

Therefore,

$$
\mathcal{K}_{V, e^{-\operatorname{codim}}\left(g_{0}\right)=\mu\left(f_{0} l \mathbb{C}^{n-1}\right) .}
$$

On the other hand, the assumption of transversality of \mathbb{C}^{n-1} to V off of 0 implies that $h=$ $\left(x_{n}, f_{0}\right): \mathbb{C}^{n}, 0 \longrightarrow \mathbb{C}^{2}, 0$ defines an isolated weighted homogeneous complete intersection singularity. For $g_{t}\left(x^{\prime}\right)=\left(x^{\prime}, t\right), g_{t}\left(\mathbb{C}^{n-1}\right)$ is transverse to V for small $t \neq 0$. Thus, $h^{-1}(0, t)=$ $g_{t}\left(\mathbb{C}^{n-1}\right) \cap V$ is a Milnor fiber of h so that $v_{\text {geom }}\left(g_{0}\right)=\mu(h)=\mu\left(f_{0} \mid \mathbb{C}^{n-1}\right)$ (e.g. by a result of Greuel and $L \hat{e},[G][L],=\operatorname{dim}_{\mathbb{C}} \mathcal{Y}(h)$, where $\mathcal{Y}(h)$ is the Jacobian algebra of h, and by direct computation,

$$
\left.\gamma(\mathrm{h})=C_{\mathrm{x}} /\left(\frac{\partial \mathrm{f}_{0}}{\partial \mathrm{x}_{\mathrm{i}}} I_{\mathrm{x}_{\mathrm{n}}=0}, \mathrm{j}=1, \ldots, \mathrm{n}-1\right)\right)
$$

Again (1.4) holds.

Versality Discriminant

Let $f_{0}: \mathbb{C}^{\mathfrak{n}}, 0 \longrightarrow \mathbb{C}, 0$ be a weighted homogeneous isolated hypersurface singularity. We can assign weights to $\theta\left(\mathrm{f}_{0}\right)$ via $w t\left(\frac{\partial}{\partial \mathrm{x}_{\mathrm{i}}}\right)=-\mathrm{wt}\left(\mathrm{x}_{\mathrm{i}}\right)$ and this induces weights on $\mathrm{N} \mathcal{A}_{\mathrm{e}} \cdot \mathrm{f}_{0}=\mathrm{NR}^{+} \mathrm{e}^{\cdot} \mathrm{f}_{0}$ (\mathbb{R}^{+}is the usual action of \mathbb{R} together with \mathbb{C} acting by translation on \mathbb{C}). We let $N \not \mathcal{A}_{\mathrm{e}} \cdot \mathrm{f} O(<\mathrm{m}$) denote the terms of weight $<m$. For a given m, let $\left\{\varphi_{i}\right\}_{\mathrm{i}=1}^{\mathrm{q}}$ be a basis for $\mathrm{N} \mathcal{A}_{\mathrm{e}} \cdot \mathrm{f}_{0(<m)}$ and consider the unfolding

$$
F(x, u)=(\bar{F}(x, u), u)=\left(f_{0}(x)+\sum_{i=1}^{q} u_{i} \varphi_{i}, u\right)
$$

The versality discriminant for F consists of $z=(y, u) \in \mathbb{C}^{1+q}$ such that if $S=F^{-1}(y, u) \cap \Sigma(F)$ (recall $\Sigma(F)$ is the critical set of F) then $F: \mathbb{C}^{n+q}, S \rightarrow \mathbb{C}^{1+q}, z$ is not infinitesimally stable. Understanding the versality discriminant of F is a basic step in understanding the structure of F and determining whether, e.g., it is topologically versal.

In [DG] a procedure was given for computing the versality discriminant for the Pham example. We show here that this procedure works for all such unfoldings described above. Let $\left\{\bar{\varphi}_{i}\right\}_{i=1}^{r}$ be a basis for $N \mathcal{A}_{e} \cdot f_{0(\geq m)}$. Also, let

$$
e=d \cdot y \cdot \frac{\partial}{\partial y}-\sum_{j=1}^{n} a_{j} x_{j} \cdot \frac{\partial}{\partial x_{j}} \quad \text { with } a_{j}=w t\left(x_{j}\right) \text { and } d=w t(y)
$$

Then,

$$
e(\bar{F}) \stackrel{\text { def }}{=} d \cdot \bar{F} \cdot \frac{\partial}{\partial y}-\sum_{j=1}^{n} a_{j} x_{j} \cdot \frac{\partial \bar{F}}{\partial x_{j}}=\sum_{j=1}^{q} w t\left(u_{j}\right) \cdot u_{j} \cdot \varphi_{j}
$$

Since $\left\{\varphi_{i}, \bar{\varphi}_{j}\right\}$ is a basis for $N \mathcal{A e}^{-f} f_{0}$, by the preparation theorem we may write

$$
\begin{equation*}
\varphi_{i} \cdot e(\bar{F})=\sum_{j=1}^{q} h_{i j}(u) \cdot \varphi_{j}+\sum_{j=1}^{r} g_{i j}(u) \cdot \bar{\varphi}_{j} \bmod \left(\frac{\partial \bar{F}}{\partial x_{1}}, \ldots, \frac{\partial \bar{F}}{\partial x_{n}}\right) \tag{4.2}
\end{equation*}
$$

$$
\bar{\varphi}_{i} \cdot e(\bar{F})=\sum_{j=1}^{q} h_{i j}^{\prime}(u) \cdot \varphi_{j}+\sum_{j=1}^{r} g_{i j}^{\prime}(u) \cdot \bar{\varphi}_{j} \bmod \left(\frac{\partial \bar{F}}{\partial x_{1}}, \ldots, \frac{\partial \bar{F}}{\partial x_{n}}\right)
$$

Let H be the $(\tau-1) \times r$ matrix with entries

$$
\begin{gathered}
H=\left(g_{i j}(u) \mid y \cdot \delta_{i j}-g_{i j}^{\prime}(u)\right) \\
q \times r \quad r \times r
\end{gathered}
$$

Let W be the variety defined by the vanishing of the $\mathrm{r} \times \mathrm{r}$ minors of H . For the Pham example [DG], it is shown that this yields the versality discriminant. This is in fact true in general:

Proposition 4.3: W is the versality discriminant of F .

Proof: The proof is a consequence of the proof of proposition 2.3 together with the construction due to Saito [S] of the generators of θ_{V} for $V=D\left(F_{1}\right)$ with F_{1} the versal unfolding of f_{0} (see example 1.3)

$$
F_{1}(x, u . v)=\left(f_{0}(x)+\sum_{i=1}^{q} u_{i} \cdot \varphi_{i}+\sum_{j=1}^{r} v_{j} \cdot \bar{\varphi}_{j}, u, v\right)
$$

By the proof of of proposition $2.3,(y, u) \in \mathbb{C}^{1+q} \subset \mathbb{C}^{1+q+r}$ belongs to W exactly if \mathbb{C}^{1+q} fails to be transverse to $V=D\left(F_{1}\right)$ at $(y, u, 0)$. Recall that transversality holds at (y, u) if

$$
\begin{equation*}
\mathbb{c}^{1+q}+\left\langle\eta_{0(y, u)}, \cdots, \eta_{\tau-1(y, u)}\right\rangle=\mathbb{C}^{1+q+r} \tag{4.4}
\end{equation*}
$$

where $\left\{\eta_{\mathrm{i}}\right\}$ denote the set of generators for θ_{V} constructed by Saito. However, note that (4.2) implies

$$
\begin{equation*}
d \cdot \bar{F} \cdot \bar{\varphi}_{i} \cdot \frac{\partial}{\partial y}=\sum_{j=1}^{q} h_{i j}(u) \cdot \varphi_{j}+\sum_{j=1}^{r} g_{i j}(u) \cdot \bar{\varphi}_{j} \bmod \left(\frac{\partial \bar{F}}{\partial x_{1}}, \ldots, \frac{\partial \bar{F}}{\partial x_{n}}\right) \tag{4.5}
\end{equation*}
$$

$$
d \cdot \overline{\mathrm{~F}} \cdot \bar{\varphi}_{i} \cdot \frac{\partial}{\partial y}=\sum_{j=1}^{\mathrm{q}} \mathrm{~h}_{\mathrm{ij}}(\mathrm{u}) \cdot \varphi_{\mathrm{j}}+\sum_{\mathrm{j}=1}^{\mathrm{r}} \mathrm{~g}_{\mathrm{ij}}^{\prime}(\mathrm{u}) \cdot \bar{\varphi}_{\mathrm{j}} \bmod \left(\frac{\partial \overline{\mathrm{~F}}}{\partial \mathrm{x}_{1}}, \ldots, \frac{\partial \overline{\mathrm{~F}}}{\partial \mathrm{x}_{\mathrm{n}}}\right)
$$

It follows from Saito's construction (1.3) and (4.5) that

$$
\begin{array}{rlr}
\eta_{k}=\left(y-h_{k k}\right) \cdot \frac{\partial}{\partial u_{k}}+\sum_{j \neq k} h_{k j}(u) \cdot \frac{\partial}{\partial u_{j}}+\sum_{j=1}^{r} g_{k j}(u) \cdot \frac{\partial}{\partial v_{j}} & 1 \leq k \leq q \\
\eta q+k=\left(y-g_{k k}^{\prime}\right) \cdot \frac{\partial}{\partial v_{k}}+\sum_{j=1}^{q} h_{k j}(u) \cdot \frac{\partial}{\partial u_{j}}+\sum_{j \neq k} g_{k j}(u) \cdot \frac{\partial}{\partial v_{j}} & 1 \leq k \leq r
\end{array}
$$

togetherwith

$$
\eta_{0}=d \cdot y \cdot \frac{\partial}{\partial y}-\sum_{j=1}^{q} b_{j} \cdot u_{j} \cdot \frac{\partial}{\partial u_{i}}+\sum_{j=1}^{r} c_{j} \cdot v_{j} \frac{\partial}{\partial v_{j}}
$$

are generators for V. Hence, (4.4) holds exactly when the v-components of the vectors $\eta_{\mathrm{i}} \mid \mathbb{C}^{1+\mathrm{q}}$ span \mathbb{C}^{r}. These components give (up to signs in columns) exactly the matrix H (since $\eta_{0} \mid \mathbb{C}^{1+q}$ has v-component $=0$). Thus, (4.4) fails exactly when the rank of $\mathrm{H}<\mathrm{r}$.

Bibliography

A Arnold, V. I. Wave front evolution and equivariant Morse lemma, Comm. Pure App. Math. 29 (1976), 557-582.

B Bruce, J.W. Functions on Discriminants, Jour. London Math. Soc. 30 (1984), 551-567

D1 Damon, J. a) The unfolding and determinacy theorems for subgroups of \mathcal{A} and \mathcal{K} Proc. Sym. Pure Math. 40 (1983) 233-254.
b) The unfolding and determinacy theorems for subgroups of \mathcal{A} and \mathcal{K}, Memoirs A.M.S. 50, no. 306 (1984).

D2 ---- Deformations of sections of singularities and Gorenstein surface singularities, Amer. J. Math. 109 (1987) 695-722.

DG Damon, J. and Galligo, A. Universal Topological Stratification for the Pham Example, preprint.

DP du Plessis, A. On the genericity of topologically finitely determined map germs, Topology 21 (1982), 131-156

G Greuel, G-M. Der Gauss-Manin Zushammenhang isolierter Singularitaten von vollstandigen Durchschnitten, Math. Ann. 214 (1975), 235-266.
de Jong, T. and van Straten, D. Disentanglement s, These Proceedings.

L Lê D.T. Calculation of the Milnor number of Isolated Singularities of Complete Intersection. Func. Analysis and Appl. 8 (1974), 127-131.

M Mather, J. \quad Stability of C^{∞}-mappings:
II. Infinitesimal stability implies stability, Ann. of Math. (2) 89 (1969), 254-291;
III. Finitely determined map germs, Inst. Hautes Etudes Sci. Publ. Math. 36 (1968), 127-156;
IV. Classification of stable germs by \mathbf{R}-algebras, Inst. Hautes Etudes Sci. Publ. Math. 37 (1969), 223-248.
V. Transversality, Advances in Math. 4 (1970), 301-336.

M2 Mather, J. How to stratify mappings and jet spaces, in Singularités d'Applications Differentiables, Plans-sur-Bex, Lectures Notes in Math., vol. 535, Springer-Verlag, Berlin and New York, (1975), 128-176

Ma1 Martinet, J. Deploiements versels des applications differentiables et classification des applications stables, Singularités d'Applications Differentiables, Plans-Sur-Bex, Springer Lecture Notes 535 (1975) 1-44.

Ma2 ------ Deploiements stables des germs de type fini et determination fini des applicationsdifferentiables (1976), preprint.

MM Marar, W. and Mond, D. Multiple point schemes for corank 1 maps, Jour. London Math. Soc. 39 (1989), 553-567

Mo1 Mond, D. On the classification of of germs of maps from \mathbb{R}^{2} to \mathbb{R}^{3}, Proc. London Math. Soc. (3) 50 (1985), 333-369.

Mo2 Mond, D. Some remarks on the geometry and classification of germs of maps from surfaces to 3-space, Topology 26 (1987), 361-383.

Sa Saito, K. Theory of logarithmic differential forms and logarithmic vector fields, J. Fac, Sci. Univ. Tokyo Sect. Math. 27 (1980), 265-291.

T Terao, H. Discriminant of a holomorphic map and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. Math. 30 (1983), 379-391.

Te Teissier, B. Cycles évanescents, sections planes, et conditions de Whitney, Singularités à Cargèse, Asterisque 7,8 (1973), 285-362.

Department of Mathematics
Universty of North Carolina
Chapel Hill
North Carolina 27599
USA.

[^0]: *Partially supported by a grant from the National Science Foundation and a Fulbright Fellowship

