4 - equivalence and the Equivalence of Sections of Images and
Discriminants

James Damon*

In [Mo2] and [MM] Mond and Marar obtain a formula relating the 4, - codimension
of map germs fy: €20 — €3,0 to the Fuler characteristic of the image of a stable
perturbation f; of fy. This has been proven to hold quite generally for such map germs by de
Jong and Pellikaan (unpublished) and by de Jong and van Straten [JS]. One curious aspect of
this formula is the presence of the 4.~ codimension, which seems to have little relation with
the image of f;. This codimension is related by de Jong and van Straten to the dimension of the
space of deformations of X = Image(fy) for which the singular set of X deforms flatly. Their
arguments depend strongly upon X being a surface singularity in C3.

In this paper, we derive another relation between A2- equivalence and properties of
image(fp). This relation is valid for all dimensions and directly relates the 4.~ codimension of
fo with a codimension of a germ defining Image(fy) as a section of the image of a stable germ.
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We recall that by Mather [M-1V], if fy: €",0 — €P,0 is a holomorphic germ of
finite singularity type (i.e. finite contact codimension) then there is a stable germ
F: C"',O —_ Cp',O and a germ of an immersion gg: C°,0 —» Cp',O with g transverse to
F such that fj is obtained as a pull-back in diagram 1 (F is the stable unfolding of f [M-IV]).

The germ gg has been used to determine A-determinacy properties of fy by
Martinet [Ma2] and topological determinacy properties by du Plessis [DP]. However, there was
lacking a precise relation between equivalence for the germ gg and the 4- equivalence of . In
this paper we derive such a relation.

Let V = D(F) denote the discriminant of F (which is also Image(F) when n' < p’).
Given a variety-germ V,0 © CP',O there is a notion of "contact equivalence preserving V" on
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germs h: €0 —— CP 0, defined by the action of a group %y [ D2].
The main results here concern the relation between Xy - equivalence for gpand
A- equivalence for fy. They are:

1)  gohas finite &y - codimension if and only if f; has finite 2- codimension;

2) if we denote the extended tangent spaces to the - orbit of f(; and the %5; - orbit of gg by
T4 fp and TKy ¢'gg, With associated normal spaces

NAfy = 0(fp)/TAfy and NXy e = 0(g0)/TXy e g0
then these normal spaces are isomorphic as Oo:P o—modules (theorem 2);

3) taking dimensions in (2) we obtain (theorem 1)
Ae-codimension(fy) = XKy e-codimension(gp).

4)  if we replace the germ f; and the stable germ F by multi-germs f: €",S — CP,0 and
F: €S —» €P,0 with f; finitely determined and F stable then 1) - 3) remain valid (see
theorem 3; however, to keep notation simple we give the proofs for the case where ISI=1 and
observe that they work for all finite S).

The third result allows us to place the Mond-Marar formula into a common context
with other formulas which relate the algebraic codimension of (nonlinear) sections of varieties
to Euler characteristics of their perturbations.

As corollaries of these results and their proofs we obtain: i) sufficient conditions for
unfoldings of fj to be A- trivial in terms of the corresponding unfoldings of gy being %y -
trivial (but it is unknown whether the converse holds); ii) a proof that unfoldings of f; are 2-
versal if and only if the corresponding unfoldings of gy are Xy - versal and iii) a
characterization of the versality discriminant as the set of points where g fails to be transverse
to V and an explicit method for computing the versality discriminant for unfoldings of
hypersurfaces.

The author is especially grateful to the organizers of the special year in bifurcation
and singularity theory at the University of Warwick for their generous hospitality and support.
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§1 A and XKy-equivalence

Here we recall several basic properties of 4 and Xy/-equivalence; while those of
A-equivalence are generally well-known, those of Xy -equivalence are less so. The key
properties of these groups which we are interested in are: their tangent spaces and infinitesimal
conditions for versality, infinitesimal conditions for triviality of unfoldings, and geometric
characterizationsoffinitedeterminacy.

All germs which we consider will be holomorphic. The two principal notions of
equivalence for rnap germs are 4 and X-equivalence. We denote the space of holomorph1c
germs fO c’ O-»ﬂ? 0 by (¢ and use local coordmates x for 0: andy for GZ With D
denoting the group of germs of diffeomorphisms o : c” ,0- c’ ,0, the group 4 = Dy x Dy
actson Cgy by (9y)fp = yofgo@™. The group X (contact equivalence) consists of
He Doy suchthattherelsan hfti) sothat Hei=ioch and toH = hon where i(x) =
(x,0) is the inclusion i: CIZ o€  and n(x,y) = x is the projection = : C —>(C Then, X
actson Cgy by

(h(x), H-f(x)) = H(x, f(x)),
ie. graph(H-f) = H(graph(f)). Germs are 4 or X-equivalent if they lie in common orbits of
the group actions.

An unfolding of f isagerm £:C° 10 C 30 of the form f(x,u) = (E(x,u)w)
with -f(x 0) = fgp(x) (here u denotes local coordinates for Cq,O). Both 4 and X extend to
actions on unfoldings: if ¢ € D +q and y € D, +q e unfoldings then (Q,y)-f = yofo @?
whileif He D, +q is an unfolding with an unfolding h € D stq $ so ctlhat Ho sl+—+<11 oh and
nwoeH=hon' (and i’ and «' are inclusions and projections for ¢ and € ). Then

(h(x,u), Hfxu) = H(x,f(x,u), u).
If (V,0)c Ct,O is a germ of a variety then we can define a subgroup of X
%y = He x:HC xV)c €' xV}
and similarly for unfoldings. This yields %y,-equivalence. Just as X-equivalence captures
the equivalence of the germs of varieties fO“(O), s0 too Xy/-equivalence captures the
equivalence of the germs of varieties 0“(V).

For G= A4, K or Xy, we say that an unfolding f of f( isa G-trivial unfoldingif
itis G-equivalent to the trivial unfolding fg x 1d . Itis G-trivial as a family if the G-
equivalence preserves the origin for all parameter values If fy(x,uv) = (f 1(x,u,v), u,v) is an
unfolding of f() so that f 1(x,0,0) = fl (x,u), then fy will be said to extend f. An extension
fy of f is G-trivial if itis G-equivalent to f x id by an equivalence which is the 1(_1Fent1ty
when v = 0. Lastly, an unfolding f is G-versal if for any other unfolding g : c’ 0-
€770 of £y, thereisa germ A : €0 €L0 such that A*f(xv) = ERAM), V) is G-
equivalentto g.

tq
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Tangent spaces
For CS,O with local coordinates x, we denote the ring of holomorphic germs Ocs o by

Cx with maximal ideal m,, and similarly with u also denoting local coordinates for Cq, Cx,u

denotes Ocs a0 etc. Also for f;: CS,O - Ct,O, the ring homomorphism f:): 'Cy - Cx,

induced by composition, will be understood without being explicitly stated.

t
The tangent space to (g, at f;, consists of germs of vector fields : Cs,0-> TC such

that me { = f; and is denoted by 6(fy)) 3 ¢y {%} (here the R-module generated by
1

@1,--Q is denoted by R{@q,...,} or R{g;} if k is understood). Also, 65 = G(idcs) o

{—%—} and similarly for ©,. The extended tangent spacesto A and X (which allow movement
i

of the source and/or target) are given by
oo d
Tty - G leg (2]

L R

For the tangent space for Xy;, we consider the module of vector fields tangent to V.
If I(V) denotes the ideal of germs vanishing on V, then we let
By = {{e6,:LAV)cIV)}.
This is denoted Derlog(V) by Saito [Sa]; however, we use this simpler notation as there is no
danger of confusion with other notions. Oy extends to a sheaf of vector fields tangent to V,

©y which is easily seen to be coherent [Sal. If {ni}Zl denotes a set of generators for Oy,

then

%
Tavets - ala)ea ety
For G= 4, K or Xy, we denote the normal space by
NG.fy = 6(fg)/TgGefy
and the G.-codimension of f;is dim cNge‘fO'
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The versality theorem allows us to relate several different approaches to versality

(Martinet [Mat] for 4 and %, [D2] or [D1]for ). For any unfolding £: €% 4,05 ¢ %0

we let ij = u=0"

E4E0

Theorem (versality theorem) : For G = 4, X, or Xy, and an unfolding f of f( the
followingare equivalent:

1) f is G-versal
i) TGefy+ <81f,...,aqt> = O(fy
iii) any unfolding f; of f;, whichextends f isa G-trivial extension.

Note: If f: ¢s+q,0 - CH-q,O is G-versal then q 2 gc—codim(fo), and if they are equal f
is said to be G-miniversal.

Furthermore, f; is infinitesimally stable if TAe-fy = 6(f)); by Mather [M-1V]), if f,
has rank O then an unfolding f of f; is infinitesimally stable when viewed as a germ of a
mapping if and only if

Thefy + <dfdgf ay - > oy -

Hence, any f;, with X.-codim(fy) < e has an unfolding f which is infinitesimally stable.
Then, any unfolding of { is 4-equivalentto f xid.

Examples for Xy-equivalence
Example(1.1):

Let (V,0) < (¢4,0), with coordinates (X,Y,Z,W), be defined by Yw2.72 = 0. Then,
V=Vs"1himey umbrella x € and is parametrized by F(x,y,u) = (x,yz,uy,u). Consider gg: ¢3,0
~— C 0 defined by g2o(x.¥,2) = (X,y,Z, p(x,y)). It can be shown that Oy; is generated by

) ) d 9 P d p P
2YW+Z52—’ Z37+Wﬁ, WYE+Z5W’ ZZ_aY +Wzaz, 3%

We denote these by {n}s . Since
1VVi=1

] J

% % %8
&y.z {ﬁ ""’a_w}=CX,y, {7 gk a_() ’%‘,}
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ag, dgy %
then modulo Cx,y,z{go’qu"é‘zo‘}’ -a% ,% , and -;Z— are equal respectively to —% %v,
_» 2 . .
T W ,and 0. Consequently, ni o gg fori= 1105 equal, respectively,
®» 9 AN . B
Wy awe PSR Zawe P awe T W
Hence,
3 2 % %
NKV,e'g() = Cx’y, {aX 'évv} / G ,y,z{X""’E ,Tll ° go}
= »1 d
Gyalawl by 0 n Sl
(1.2) SCx,y/(y%-,p,%).

If we pull back F via gg to form fg(x,y) = (x,y2,yp(x,y2)

F
30 — cto
T Tgo
f
cZo —% ¢
then Mond computes NA4.-f be exactly (1.2) [Mo1l.

0

Example (1.3)
Let fy: Cn,O —» €0 be a weighted homogeneous germ defining an isolated

n+q

singularity. Also,let F: € ",0— ¢1+q,0 be its versal unfolding, with V=discriminant of

F. Then, Saito [Sa] gives the following construction for the generators of 8y;. Let {‘Pi}il be a

basis for NA.f and let ¢g = 1. We may assume up to equivalence that F is given by (

F(xu), u) = (fg(x) + 2: u;p;, u).

q _ _
oF &
jzoaij(u)(pj mod (E”éx_)

Let

3 i 2 3 .
n = ‘y‘i+j=1ai1¥j+aiog for i>0
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and

Mg = gEulervectorfield  (d = wi(fg).

: 1+q
Then, {ni}flo generate Gv . Let gg:C—oC be defined by go(y) = (v, 0). Then,

Mje g = -y% for i>0 or = y% fori= 0. Thus,
1

o
Nf’fv’e'gO = {ay g }/C {§0 ’ni°g0}
Scy/"’y{%}

3 él c (here q = T(Eg) - 1)
=

Again gg pulls back F to give fj: Cn,0—> c,0.

of, o,
0 - ..,—0-)+<1>.
3 ox

n

Nafy 3 /(s

A

Since fq is weighted homogeneous, f( € (Y wo=—). Thus,asa Cy—module.

Since u = 1, these Cy—modulesareisomorphic.

Infinitesimal Conditions for Triviality
Next, the relations we shall establish between 4 and Ky -equivalence are most easily
established at the infinitesimal level. For this reason, we recall the infinitesimal conditions for

triviality.
+q t+ +q+ tHq+
Let f: ¢ ,0-C q,O be an unfolding of f(y and let f1:¢sqr0 C r0

extend f (with local coordinates u for Cq and v for Cr).
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Criterion for A-triviality: f{ is an A-trivial extension of f if and only if there exist vector

fields & € ¢ uv{ } ;€ Cy,uv{ } and {; € Cuv {3?1—} such that
1

&1 - -~ .
(1.4) W. = —&i(fl)—ci(f1)+8iof1 1<i<r.
Also,if q=0 and fy = fy, then f{ isan A-trivial unfolding of f(y if and only if
(1.4) can be solved with Ci = 0. Furthermore, in this case f{ is an A-trivial family if and

only if we can choose &;'€ m 'C, v{ } 8 € y' - { } (and again {; = 0).

This criterion follows from the reduction lemma for A-equivalence in Martinet {Ma1].
The converse follows by differentiating the trivialization with respect to coordinates trivializing
the unfoldings in the v;-directions.

Criterion for 7(V—trivia1ity: f{ isa Xv—trivial extension of f if and only if there are vector

. d ad
fields ; € CX,u,v{Xi} , Si € Cy,u,v{ni} (where {ni} generate GV) and (€ Cu,v{gi} such

that (1.4) is satisfied.
Similarly, if q =0, f] isa Q(V-trivial unfolding of f(y if (1.4) can be solved with {;

d

=0, ora El(v—tnwal family if (1.4) can be solved with §; € m Cy {ﬁx- } This follows for

flg/—cquivalencc by the corresponding reduction lemmas in {D1] or [D2].

Geometric Criteria for Finite Determinancy

Finite 4-determinacy and finite -determinacy each have geometric
characterizations. For G = 2 and %, by Mather [M-III], and KV, by [D2], finite G-
determinacy of f(y is equivalent to finite G-codimension of f(. Via this, there is the
geometric characterization of finite A-determinacy by Gaffney and Mather: fg is finitely 4-
determined if and only if fj is 1nf1mt631mally stable in a punctured neighbourhood of 0, i.e.
there is a representative of f, £y : U tI: such that f; is infinitesimally stable on U\{0}.
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For finite 7(V-detern1inacy, let {nl}: { be a set of generators of GV. By coherence

they also generate @V y in a neighbourhood of 0. By f: CS,O - (Dt,O being transverse to

’

(V,0) at xg we shall mean

t

mExg)” Tt

Then, fq is finitely Kv—determined if and only if f( is transverse to V in a punctured
neighbourhood of 0 (although this characterization was stated in (D2} for finite map germs f,
the proof given there works in general).

S
AEQUROITE) + <My e

xv—equivalence and suspension

Lastly, we relate 7(v—equivalence to 7(V,-equivalence for V'= Vx c. Given fg:
€% 0-¢'0 and g: € 0¢P0 welet g,fy = gofy Foranunfolding £:€C  50-¢" 0,0
of fy, wedefine g,f(x,u) = (ge -f(x,u), u) which is an unfolding of g,f;. We consider i:

€0 €70 with i(y) = (5,0) and 7:C 0 C.0 with m(y.w) = y. We also note g
induces a ¢;-module homomorphism g, :6(fy) - 8(g,f(), defined by g,({) = dg(©).

We say that V,0 C €0 and V40 cC Cp,() are g-related if for a set of generators
1
’ ’ t
{ni}?ll of BV there are nie 9V1 so that g*(ni) = nio g. For example, V,0c € ,0 and

Vv =VxC0c ™ areboth i and 7 related.

Proposition 1.5: With the preceding notation, let f be an unfolding of fy and fy an
extension of f.

1) Suppose V,0 €0 and V1,0 c Cp,O are g-related; if f is a Kv—trivial
unfolding (respectively family) theng, fisa KV1-tz'iviaJ unfolding (respectively family),
alsoif fyisa 7(V—trivial extensionof f then g, fy isa KV -trivial extension of g,f.

i) i, and m, induce isomorphisms of Cy (respectively Cy,w)—modules)

i*:Nﬂ(V,e-fO 5 N:KV',ci*fO and =, :NKV',ef'O S NKV,cn*f,O

iif) fis J(V—vcrsal if and only if 1,f is %,—versal,
f' is ﬂ(V,—versaI if and only if w,f is ﬂ(v—versal.
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Proof: i) By the infinitesimal criterion we may solve
&, .
. = - éi(fl) - Ci(f1) + 8i ° fl .
1

Applying dg, we obtain

8(80?1) - —
(1.6) - = _&i(g°f1)'Ci(g°f1)+dg(5iof1)
i
If 81 = zhljﬂj with hl] € Cx,u,v , then
dg (8 ofy = Zhij(dg(ni) ofy) = Lhyym o gofy

@' A iy’ )
N o(gof) with n() = Zhijni.
Substituting into (1.6) satisfies the criterion for triviality for g,fy. The cases of triviality of
unfoldings or families are similar.

ii) Suppose V and V are g-related:
If e Tﬂ(v’e-fo, then §=%It=0 for f a 1-parameter 7(V-trivial unfolding of fj.

a(go?) .
Then, g, () = 5 oo € TKVch*fO' Thus, g, induces a map

LN Nﬂ(v’e-fo - NXVl,c'g*fO .
It remains to show that this is an isomorphism for g=i and g=n. However, by naturality m,

i, = (e i), =id, = id. If we can show =, is an isomorphism on normal spaces then so is

+
i,. Explicitly if f'g: GZS,O - Ct r,O has components g = (f'0,1 , f’0’2) then OV, is

generated by {ni} v {%}} where {ni} are a set of generators for eV; hence,

of,
Vo= el )Gl o )

2

Cx {8%} / ¢ {%‘?—} +ox ot}

2

N?(V’e-n*flo

and the projection is exactly m, .
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1ii) Finally since n, and i, commute with condition ii) of the versality theorem

2
F

yields the results. O

§2. Relating 4 and Kv-equivalence

In this section we deduce relations between Kv—equivalence of unfoldings and families
and A-equivalence for the corresponding unfoldings and families induced via pullback. As a
consequence we obtain the numerical equality between Ae-codimension and KV,C_
codimension described in the introduction.

Because the A-equivalence and '](V—equivalence are for germs which map between
different spaces, we slightly change notation from the preceding section. Consider a germ f(y:
Cn,O - Cp,O which has finite X-codimension. As mentioned in the preceding section, there is
an unfolding F: € ,0- €0 of fy which is stable when viewed as a germ. We shall refer
to such an unfolding as a stable unfolding of f(. There is an inclusion gg: d:p,O > P ,0
given by go(y) = (v,0) and g is transverse to F, and f may be viewed as being obtained
by the fiber product, i.e. pull-back of F by gg.

’ F ’
"o — cPpo

1 i £0
n fo P
Co0 — €0
Also, given an unfolding g of gp we have an induced unfolding f of f; obtained as the
fiber product of F and g We shall relate the 4-equivalence of f( and its unfoldings with
the Kv—cquivalencc of gp and its unfoldings.
By [M2], we may choose a representative of F, again denoted by F: U - W such that
if Z(F) = {x e U:rkdf(x) <p} denotes the critical set of F, then
1)  FY0) n X(F) = {0}
2)  FIX(F) is finite to one
3) F isstable.
We let D(F) = FQ(F)). If n2 p this is the discriminant of F, whileif n<p itis the image
of F. We denote D(F) by V.
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Remark 2.1: Any unfolding of F is A-equivalent to F x id. If we were to replace F by
F x id cf then D(F x id d:r) = D(F) x ¢ = V', say. By proposition 1.5, 7(V—equivalence for

go and its unfoldings is equivalent to J(V,-equivalence for i,gg=1i0ggp: CP,O —cP 0o

Cp +r,0. Thus, it does not matter which stable unfolding of fO we choose.
A principal reason for the close relation between 4 and -equivalence is the
characterization of OV due to Arnold [A] and Saito [ Sa) (see also Bruce [Br) and Terao [T)).

Lemma 2.2: With the preceding notation,
GV ={ne Gp': thereisa £ € O so that §(F) = n o F},
that is, the set of liftable vector fields.

Proof: The proofs for n2p are given in the above references. The argument for n<p is the
same; by Hartogs' theorem T lifts if and only if it lifts off a set of codimension 2 in c".
As F is stable, the only singular points of codimension 1 occur at double points when p=n
+ 1. Clearly m lifts from the regular points of V. Atdouble points, F is a suspension

of the germ C,0 LL C,0- ¢2,O defined by xp x,yp y in CZ with image x.y = 0. The

vector fields tangent to this set are generated by x% and y%

immediate since dF(E) is tangent to Vreg soforany he I(V), Eth) =0 on Vreg and hence
by continuityon V. 0O ‘

and clearly lift. The converse is

The first question to resolve is the relation between g() being finitely :I(V—detcrmined
and f(y being finitely A-determined.

Proposition 2.3 fyis finitely A-determined if and only if gyis finitely
:l(v—dctcnnincd.

Proof: For both directions we use the geometric criterion from the preceding section.
& As g is finitely ﬂcv—determincd it is transverse to V in a punctured neighbourhood of

0. Let W be such a punctured neighbourhood with a representative of g still denoted by gg.
Let {ni} be a set of vector fields in Gv which generate @V " for y' in a neighbourhood of

0 which includes W (by shrinking W if necessary). For ye W, let S = F“(go(y)) N Z(F),
which is finite. For each i let &; be a lift of ni which, by shrinking U if necessary, is

defined on U. Then, F: c" WS- c? ,go(y) is stable. Pick a subset {n 1,...,1'1r} of the above

set {ni} such that <n yeensT]

spans a complement subspace to
o) P plementary subsp

1(go(y)
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dgo(y)(Tde). Then, since &;(F) = Fom;, by a standard argument in e.g. Martinet [Mat],
F:C" .S € gy(y) is A-equivalent as a multi-germ to foxid: € S » €’ ,y. This

implies that f: C',S - €',y is stable (fy is stable if and only if fox id is by the
infinitesimal criteria of Mather [M-IV]). As y was an arbitrary point of W, f; is stable in a
punctured neighbourhood of O and so is finitely Z-determined.

Conversely, if f( is finitely A-determined then for y in a punctured neighbourhood

W of 0, fy: s de,y is stable. Hence, F: C" S » CP ,y is an Z-trivial unfolding of
fo. Thus, there are vector fields &;, '; defined near S and y sothat §(F) =1;F and
{n'i (y)} span a subspace complementary to cP. Thus, n'i € @V - By choosing W smaller

if necessary, {T]i} generate @V y for y € W. Hence, the subspace spanned by {'n’i (y)} is

contained in that spanned by {ni } . Thus, P is ransverse to V at y. Thus, P is

)
transverse to V in the punctured neighbourhood W, i.e. gg is transverseto V on W and

hence is finitely xv—dctermined. o

Second, we relate ﬂ(V—triviality of unfoldings of gg with A-triviality of unfoldings

. pHqtr pHq+r

of fo. We let g(x,u) be an unfolding of £0 and gl(x,u,v) : C 0-C K
extension of g. Welet f and f{ denote the induced unfoldings of fj.
Proposition 2.4: i) If g isa Kv-tn'vial unfolding (respectively Kv—lrivial family)
then f isan A-trivial unfolding (respectively A-trivial family).
ii) If g1 isa Qg,—trivial extensionof g then f{ isan A-trivial extension of f.

Proof: We give the proof of ii); that of i) is analogous (and slightly easier).

By the infinitesimal criterion, there exist germs of vector fields {; € Gy %} ' X, €
i

Cyuv {n;}, and y; € Gy {381_} (with {n;} generating BV) such that

i

%
(2.5) Ta% = -§i@) - Vi) + X081 -
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L te the li I = , 1 =) h E, ith
et {éi} denote the lifts of the {ni} f X; Y hijnj et & =2 ljéj wi

+
h'ij = h”ij o (F x id). To define h"ij , we note that hij is a germ defined on ¢p+q r;

+ +q+
: ¢p+q r,O - ¢p+q r,O is a germ of an immersion. Thus, h;; = g: h";; for

however, £1 j

’ + .
some h”ij on d:lHq r,O. We also replace X by x'i = Zh"ijnj where nj also denotes its

+q+ .
trivial extension to Cp 4 r,O. Then (2.5) remains valid if we replace Xi by x’i since

xiog1=xiog1. Also

(2.6) Bi(ind)=x’io(ind).
Now, f; is formed from g4 and F xid by fiber product. We make this explicit. Let
Hy : Cn'+p+q+r’ 0 —s c2p’+q+r, 0
be defined by Hl(x',y,u,v) = (I-*’(x'), g1(y,u,v), u,v), and
H:¢" PHo ., ¢
by H(x',y,u) = (F(x), g(y.u), u). Let,
A1 = {y\yuv):ye Cpl},
A= {Fyuw:ye Cpl}.
Then, fy and f are the restrictions of H1 and H
H, : Hl"(A1) — A H: H'A) — A.

1
We wish to prove that H , | Hl"(A 1) is an 4-trivial extension of H|H7(A).

Weclaim
H, % o
(2.7) = - (o,—avT) = - (338 Hy - viH + Q3x) ° Hy
for on the first component

0 = - &Exid) - 0+ o (Fxid),

and on the second component

%%— = -GEP-viED+Xje 81

1

which follow by (2.5) and (2.6). Also,

9 -
i = 5 QX

istangentto A and if we let
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then

~

i & (Hy) = Hyo1j;. i
Thus, E';i is tangent to H1"(A 1) . Then, the restrictions fj;| A and E’i | Hi”(A 1) give the
vector fields which provide the infinitesimal trivialization of Hjy | Hl"(A 1) as an extension of
HIH'A). T©

Now we are in a position to establish the equality of codimensions before we even
define the algebraic homomorphism between normal spaces. Itis enough to show: 1)if g isa
Kv-versal unfolding of g then the induced f is an A-versal unfolding of g and 2) there is
an A-miniversal unfolding f of f( induced by an unfolding g with g Kv-vcrsal. For by
the versality theorem, 1) implies ﬂle-codim(fo) < Kv,c-codim(go) while 2) implies the
reverseinequality.

Then, 1) is established by

Lemma 2.8: Let g be a Kv-vcrsal unfolding of gy, then f is an A-versal
unfolding of fO.
Proof: Let f{ be an extension of f. To prove that f is A-versal, it is sufficient to prove that
any such fy isan A-trivial extension of f. If we can show that f; isinduced by a g
which is an extension of g, then, by the Kv—versality of g, g { isa ’J(V—trivial extension of
g; and by proposition 1.5, f{ isan A-trivial extension of f. We actually prove a variant of
this where gy 8 and gq are replaced by related germs hO, h and hl’ which induce f, f and f4
from a larger stable unfolding so we can still apply proposition 1.5.

To define the h's, we enlarge the stable unfolding F to include explicitly all of the
unfoldings under consideration. We represent F ,as an unfolding F(x,w) = (ﬁ(x,w), w). The
unfolding g(y,u) = (g(y,u),u), & ¢p+q,0 — Cp ,0 has the form (y,w) = g(y,u) = ('(y,u),
g"(y,u)). Define amap ¢ : cP +q’0 —cP +q,0 by ¢(y,w,u) = (@'(y.u), g'(y,u) +w, u). It
is easily checked that ¢ is a germ of a diffeomorphism, so that F x id pulls back via ¢ to an
unfolding

Fixuw) = (ﬁi(x,u,w), u, w)
and that
I_:l(x,u,O) = }'(x,u) and IEl(x,O,w) = la(x,w).
Consider the unfolding
Fy(x,u,w,v) = (I-:l(x,u,w) - _t:(x,u) +_f1(x,u,v), u,w,v).
Then
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(2.9) Fs(x,u,0,v) = (;'1(x,u,v), 1,0,v) and Fp(x,0,w0)= (I_T(X,w), 0,w,0)

Since F is stable, by (2.9) and the infinitesimal criterion of Mather, Fy is stable. Then, we
1 - ' + - ! +

define hy: €20 — €” "0, h: P70 € 0, and by €0 P T 0 by

ho(y) = (v,0,0,0), h(y,u) = (y,u,0,0), and l_ll(y,u,v) = (y,u,0,v). By (2.9) we see that h pulls

back F, to give f, }_11 pulls back F, to give fy and hy is an extension of h. If we knew that
hq were a KV,,—tn'vial extension of h, where V" = D(F), then by proposition 1.5 we could

draw the desired conclusion.
- . p p+a+r

To see that it is, we define Gg: €,0 — C 0 by Go(y) = (y, 0, 0) and the
unfolding G(y,u) = (G(y,u), u) by G(y,u) = (&(y,w).u,0). Then, g, = m,Ggand g = 7,G
for m €P +q+r’0 —cP ,0 the projection. Thus, by proposition 1.5, G is a KV,—versal
unfolding of G where V' = V x €1, Also, (¢ x id)sh = G , (¢ x id)4hy = G, and
¢ x id(V")= D(F x id) = V'. Since ¢ x id is a diffeomorphism, h is a :l(V,,—versal unfolding
of hy if and only if G is a :KV,-versal unfolding of Gy, which it is. Hence, hy isa
ﬂ(v,,—trivial extension of h; and thus, f{ isan A-trivial extensionof f. O

For 2) we let f(xu) = (;’(x,u), u) denote an A-versal unfolding of fg with
f: CM,O - Cn+q,0. We define an unfolding of gp(y) =y by g(y.w) = (y,u).

Lemma 2.10: g isa KV— versal unfolding of g, where V = D(f).

Proof: Since

3 2
Tﬂ%-f0+<¥l,...,5y—;> 2 T4 £

it follows that the A-versal unfolding f is also a stable unfolding of f(). Then, we may use f
for our stable unfolding F.

Let gy be an extension of g, with additional parameters v € €. Define

+ +
(p:d:p+q r,O — cp+q r,O by o(y,u,v) = (1(y,u,v), v). As gy is an extension of g,

£1(y,u,0) = (y,u). Hence, ¢ is a germ of a diffeomorphism by the inverse function theorem.
We may pull back fxid by ¢ to obtain an unfolding fy : Cn+q+r,0 — Cp+q+r’0 . Since
o(y,u,0) = (y,u,0) , _fl(x,u,O) = _f(x,u) . Note even though f{ is a pull-back of a trivial
unfolding f x id, the pull-back is not in the usual sense of unfoldings; hence, the unfolding
need not be an A-trivial extension f. However, f{ is an extension of the unfolding f which is
A-versal. Hence, f{ is an A-trivial extension of f by the versality theorem.
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By the infinitesimal criterion, there exist vector fields of the form

d 2
x1=?i+71+c1 8i=¥+€l+cl 1<i<r
1
b} 0
where v € Cy,u,v {ayi} & € Gy {ax—} .G € Qv {f} and such that
i J b}

81(f1) = Xi° f1 .
Thus, x; is fq-liftable and
d
5= = Xi-Yi-Gi

1
Consider the unfoldings h and hy of hy(y) = (¥,0,0) with h(y,u) = (y,,0) and hy(y,uv) =
(¥,u,v).

- - - aﬁi ]
Xieh1 = %, Gty =, vihy) = vj, and a_v, = A
Hence,
%, = = - :
x = _Yi(hl)_c-'i(hl)+xi°hl 1<igr.
1
Hence, hy isa ,~trivial extension of h where V' = D(fy) .

Now, @MD(f1)) = Df) x € = Vx € and ¢(y,u0) = (y,u0). Thus, @,hy isa
‘Kvx ot trivial extension of ¢@,h by proposition 1.5 and hence gy = n,@,hq isa 7<V-u'ivial
extension of g= m,¢@,h. As g{ was an arbitrary extension of g, g is 7(V-vcrsa1. a

Now,if g isa %—miniversal unfolding of gg on q parameters, then the induced f is
an A-versal unfolding of fj by lemma 2.8. Thus, by the versality theorem,
e-codim (g =924 e—codim (fg). On the other hand, if f isan 4 e—miniversai
unfolding of fo, then the unfolding of g defined in lemma 2.10 is Kv—versal so the

inequality isreversed. We conclude,

Theorem 1: With the preceding notation
ﬂe-codim (fg) = Y(V,c-codim (g -
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§3. Isomorphism of Normal Spaces

As in the preceding section, we let O :€",0 — €P0 have a stable unfolding
F:c" 0—> ¢p ,0 with g cP0— Cp ,0 denoting the inclusion of cP . By a choice of
local coordinates we may assume F(x,u) = (F(x,u),u) = (y,u) and go(y) = (y, 0).

In this section we shall define an isomorphism between NKV, - and Nﬁc-fo when
both (i.e. either) are finite dimensional. For { € 6(gq), we may represent = (Cl, Cz)
where §1 denotes the y-component and Cz the u-component of {. We define a Cy—linear
homomorphism @ : O(gO) - S(fo) by

Q) = -§yofy + 4 Fx0) €y o £

Theorem 2: @ induces an isomorphism of Cy-modu]es
O NKV,e'gO s Nﬂe-fo
Proof: The proof of this theorem will occupy the rest of this section.
Given a 1-parameter unfolding of &g which we denote by gt(y) instead of g(y.t),

g
we can associate to it an element of e(go) , namely { = Ttit 0 We shall explicitly show
that ®({) is the comresponding element of G(fO) obtained from the induced deformation f ¢ of
f

0 which is defined as a fiber product

r
(3.1) ft : Xt = {x,1y) : F(x,u) = gt(y)} p_) cP
with pr(x,u,y) =y

We write gt(y) = (glt(y), gzt(y)) = (y,u) so that giO(Y) =y, gZO(Y) ={0. Then,
(3.1) defines Xt by
F(xu) =g;,(y) and u=gy(y);
or x and y are related by

(3.2) g4, - Fx, g5, = 0

Let H(x,y,t) denote the functlon on the left hand side of (3.2). We apply the implicit
function theorem to parametrize H (O)
(3.3) d H(O 0,0) = d glO(O) - d F(O,O)ongO(O).

Since 810~ id and 80 = 0, we see from (3.3) that dyH(O ,0,0) = 1. Thus, by the
implicit function theorem, we may represent H~ (O) as the graph of y as a function of (x,t),
Y=y .
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Then, Xt = {xuy):u= gzt(y) , ¥y = \V[(x)} . Let <pt(x) = gztowt(x) so that
(pO(x) = gzoo\yo(x) =0. Also, 810~ id so for small t, g1, is a germ of a diffeomorphism.
Hence, by (3.2)
¥y =81( o F(x g5,y
Thus, by the above description of Xt and (3.1),

¥ = ¥,00 = g1 e F(x, 9,(x))

and so
(34) £,00 = g1;" o F(x, 9,(x) .
Thus, by the chain rule
-1 _
(3.5) o= o Bk x) +d ! c»ai(x (x))%l
‘ Ft=0 o t=0" %0 £10° u P 30

From giti ogq,=id weobtain

og 198
3.6) b 1

Since g10= id, (3.6) implies

%4 %,
k=0 T T =0
Also, (po(x) =0 and F(x,0) = fO(x) so (3.5) becomes
o, og oF
t __ et . o _t
3.7 gItzo— o It=0 0(x) + = x,0) 3 |t=0 .
Then,
Py =By ° Vo OF
0,0) = gy g7,  Fx, 0,00).
Hence
a(pt ath -1 =
(3.8) 7't=0 = _&—It:o ° 810 ° F(x.gy(x)) + dgygo (=) .

Since £y0° and hence dg20’ equals 0, the second term vanishes. Thus, (3.8) becomes

%9 %

7't=o = Tlt=o ° fg(x).
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Substituting into (3.7) yields

of, og _ og
bty _ S, LTI
(3.9) = 0= " 3 oo Sfo® * duF(x,O)( = 0) £4(x) -
If
agt aglt ag2[
=% |t= - (Tlt=0’ Tlt=0) = G &)

then, we obtain from (3.9)

af
(3.10) g = - Cyofy + 4 Fx0) ) o

We see that ®(£) is equal to the right hand side of (3.10):

D B(go) o e(fo)
(3.11)

D) = - §yofy + d Fx0 Gy o f,

og
Next, if { € Ty o 8g - then {= —at—t! for g, a %G, -trivial deformation. By

t=0

proposition 2.4, ft isan A-trivial deformation of f,

0 Thus,

of,
o{) = g' 0 € T4 f,.
Thus,
(D(TKV,e'gO) < TAA,
and induces a Cy—module homomorphism.

(3.12) & N%&; 89 — NA ;.
We now show this is an isomorphism.

of,
Given & € O(f, o » then £ = —I -0 with f, induced, up to A-equivalence, by an

unfolding g Thus, g induces f't with ft A-equivalent to f’t , say ft = ‘Vt°f't°q>t with Yo =
id, P = id. We compute
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X o, v
L R N 1 (51 )
at t=0 a t:o a[ t:o 0 0 a[ t=0

af't
= ?|t=0 + mefy - &(fy) -
Thus,
aft
g = gl -0 = (D(C) mod Tﬂe'fo .

Hence, ® is surjective.

By Theorem 1, the spaces in (3.12) have the same dimension as vector spaces; as ® is
surjective it is an isomorphism. a

We can now refine our earlier results relating the versality of gy and fO.

Corollary 1: With the preceding notation, let g be an unfolding of g0 and let f denote the
induced unfolding of f(). Then, fis A-versal if and only if g is K- versal.

Proof: The proof of the theorem shows that for each i,

_ o of
*&) "

1

Hence,the corollary follows by the versality theorem and theorem2. 0O

We also obtain the analog of theorem 2 for multi-germs, which follows by the same
proofs except applied to multi-germs.

Let fy: €"S — €P0 have a swble unfolding F : €8 — €P0 with
8y €P,0 — P 0 denoting the inclusion of CP. Then, @ defined by (3.11) also defines a
homomorphism for G(fo) denoting the module of vector fields along the multi-germ f()‘ Then,
® also induces an isomorphism in this case.

Theorem 3: i) The multi-germ fO has finite A-codimension if and only if g0 has finite
fKV—codimension;
ii) in the case of i) ® induces an isomorphism

o Nﬂcv’ 80 = Nﬂe-fo.
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§4 Several Consequences

We deduce consequences of the main theorems for: a) placing Mond’s formula in a
more general context as an analogue of Milnor’s formula but for nonlinear sections of
nonisolated hypersurface singularities and b) verifying that a method for computing the
versality discriminant of an unfolding of a hypersurface singularity (given in [DG] for the Pham
example) is valid in general.

Nonlinear Sections of Hypersurface Singularities

Let V,0 € €C™,0 be a hypersurface germ and let gy ¢P,0 — C™0 bea germ
of an immersion. We can define two numbers associated to the nonlinear section gy 2 number
defined algebraically, which measures the codimension of gy and a number defined
geometrically, which is the analogue of the Milnor number for gt(Cp)m V with g a
perturbation of g. If we ask when these two numbers are equal, it turns out that not only can
Mond’s formula be interpreted as an equality of these numbers but, in this context, it is related
to other formulas which involve seemingly unrelated numbers such as the multiplicity of the
discriminant for a versal deformation and a special case of Greuel's and Lé’s formula for the
Milnor number of isolated complete intersection singularities [G], [L1.

The algebraically defined number associated to gpisits KV—codimension

Valg(gg) = %Ky -codim(g)

For this number to be finite we must assume that g is transverse to V in a punctured
neighborhood of 0. For the geometrically defined number, we consider a one-parameter family
of germs g, such that g, is transverse to V for t # 0. Here we have to use a weaker notion of
transversality than that used in § 1, i.e. we choose a Whitney stratification of V with the
property that all N € Oy are tangent to the strata and require transversality to all of the strata.
Then the geometric number which is the analogue of the Milnor number is

Veeom(8p = | Ug(CP) NV Be) - 11

Here x(gt(dlp) NV N Bg) is the topological Euler characteristic, Bg is a ball about 0 of radius
€ and € and t have to chosen appropriately small. This geometric number can be shown to be
well-defined. Mond’s formula and other related formulas suggest the following.

BASIC QUESTION : Suppose both V and g are weighted homogeneous for the same
weights on €™ When do we have the analogue of Milnor's formula, namely, when does (4.1)
hold? ‘
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(4.1) Valg(8p) = Vgeom(gp

We consider some cases where it is presently known to hold.

1) Let'V = D(F) = image(F) where F: €?,0 — €™*10 is a stable germ, and let
8o’ 0:3,0—-» C“+1,O denote a germ of an immersion transverse to F with f( the pullback.
By theorem 2

ﬂle-codim(fo) = Kv'e—codim(go) = Valg(g())-
If g, is a family such that gt(d:?’) is transverse to V for t # 0, then by the proof of proposition
2.3, the pull-back family f, is stable for t # 0. Then ft(Cz) N Bg = gt(¢3) NV N Bg. Thus,

Vgeom(gp) = X (ft((tz) N Bg) - 1l . Thus, by the result of de Jong and van Straten [JS],
(4.1) holds when g and F are weighted homogeneous for the same weights on ¢,

2) Let V = D(F) where F: €90 — ¢!*90 is a versal unfolding of a weighted
homogeneous hypersurface singularity defined by fy (here q = T - 1). Also, let g5: €,0 —

¢1+q’0 denote the germ go(y) = (v,0). Then, g0 is transverse to F with f( the pullback. We
saw in example 1.3 that

ﬂe—codim(fo) = ?(V,e-codim(go) (= Valg(g())) =1t-1
If g, is transverse to V for t small # 0 then g,(C) N V N Bg consists of m(V) points,
where m(V) denotes the multiplicity of V. However, m(V) = i ; see e.g. [ TI. Hence,

Vgeom(gg) = M - 1. Since f() is weighted homogeneous, i = T so again we have equality in
(1.4).

3) Let V = D(F) = image(F) where F: €80 —» €110 is the stable unfolding of the germ
fo(x) = (x"x™) with (n,m) = 1. Likewise, let g: €2,0 — €1 denote the germ of an
immersion gy(y1.yp) = (y1.y2,0) transverse to F with fy the pullback. Then, a simple
calculation shows that  Z.-codim(fp) = 8(C) where Cis the image curve fo(C) defined by
y1m - y2“ = 0. Also, f(y can be deformed to a stable germ f; so that the image curve fi(C) has
8(C) double points and f(C) N Bg = gt(cz) M VN Bg for g the deformation of g inducing
f;. Hence,

Vgeom(gy) = | X E(€)NBe) - 11 = 1(1-8) -1l = &O.

Lastly we consider a hypersurface which is not the discriminant of a stable germ.
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4) Let V,0 be an isolated hypersurface singularity defined by a weighted homogeneous germ
fg: €0 — C0. Let gy 10— ¢€"0 be a germ of an immersion which is
weighted homogeneous for the same weights and for which go( C"'1) is transverse to Vina

punctured neighbourhood of 0. By a weighted homogeneous change of coordinates we may
assume that g0 is a linear embedding gO(xl, v Xpo1) = (X5 - Xp_1,0). Now, Oy is

dh s H 3 . ,
generated by {Cij = 3(—;‘— T 3w W e} where e is the Euler vector field. Thus,
1 1 1

]
X
|
[’
~
)
—_—
¥
.
]
—_
=
|
—_
L
+
e
e
;_(3_4

NKV,e'gO

4

1]
N
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g
—
~
—
N
——
¥|
&
hil
1]
o
B
[}
—
——

S
(since e o = Xi=— )
) PR

"*ol .
&/ (&; x=0r §= L s B=1).

Therefore,

%, o-codim(gg) = p(fol -1y,
On the other hand, the assumption of transversality of ¢! 10 V off of 0 implies that h =
(xpfo) : co0 — CZ,O defines an isolated weighted homogeneous complete intersection
singularity. For g(x’) = (', 1), gt(Cn’l) is transverse to V for small t # 0. Thus, h™1(0,t) =
gt(c:ﬂ'1) AV is a Milnor fiber of h so that Vgeom(gg) = 1(h) = p(fg! ¢ 1y (e.g. by aresult
of Greuel and L&, [G] [L], = dimg Xh), where «Ah) is the Jacobian algebra of h, and by direct
computation,

%h) = Cx/(%)?'l xg=p 1= 1w s m=D).

Again (1.4) holds.
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Versality Discriminant

Let f(y : €",0— €,0 be a weighted homogeneous isolated hypersurface singularity. We can

assign weights to G(fo) via wt(éiﬁ_ = -wt(x;) and this induces weights on Nﬂlc.fo = Nzt e'f()
1
( R is the usual action of X together with € acting by translation on C). We let N2 f<m)

denote the terms of weight < m. For a given m, let {‘Pi}g,q be a basis for NAgfo ) and

consider the unfolding

q
Fxu) = ( Bxu), u) = (fo(x)+§iui<pi, u)

The versality discriminant for F consists of z = (yu) € ¢!*q such that if
S = F-(y,u) () (recall Z(F) is the critical set of F) then F : € 4,8 — ¢ 792 is not
infinitesimally stable. Understanding the versality discriminant of F is a basic step in
understanding the structure of F and determining whether, e.g., itis topologically versal.

In [DG] a procedure was given for computing the versality discriminant for the Pham
example. We show here that this procedure works for all such unfoldings described above. Let

{@i}Li be a basis for NAg-f(>m). Also, let

n
0 d .
e = d.y.W - ; anja&? with 8 = wt(xj) and d = wt(y).
Then,
MY X0 S S SR
4 “

Since {¢; , (T)j} is a basis for N4_.f), by the preparation theorem we may write

r
e(F) = (0)-0; ()-B; F o F
P e(F) = g hlJ(ll) (PJ + _)§=:1 glj(u) (PJ mod (E ""’é;;)

(4.2)
Gie(F) = ih'“(u)-(p- + ig’--(u)-(p- mod (_El _aE)
1 j=1 1) J j=1 ) J axl’""ax

n
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Let H be the (t-1) x r matrix with entries
H = (g 1 y-8; - g5w)

GxT  TXT

Let W be the variety defined by the vanishing of the r x r minors of H. For the Pham
example [DG], it is shown that this yields the versality discriminant. This is in fact true in
general:

Proposition 4.3: W is the versality discriminant of F.

Proof: The proof is a consequence of the proof of proposition 2.3 together with the construction
due to Saito [S] of the generators of By for V = D(F;) with Fy the versal unfolding of f(y (see
example 1.3)

Fixuwv) = (fg(x)+ iuf(pi + Z‘i Vj'(ﬁj’ u, v)
=

i=
By the proof of of proposition 2.3, (y,u) € cltac clHatr belongs to W exactly if cl+q
fails to be transverse to V = D(Fy) at (y,u,0). Recall that transversality holds at (y,u) if

(4.4) ¢1+ C1+q+r

q _
Moy Mty "

where {n;} denote the set of generators for 6+ constructed by Saito. However, note that (4.2)
implies

- 9 I _ -
d-F- i'% = J;hij(u)@j + j;gij(u)-cbj mod (SX—F,EI-:-)

! 1 axn
(4.5)
B -.._i. = L a(n- . ’, A ai: af?

It follows from Saito’s construction (1.3) and (4.5) that
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T
d 2 d
= (y-hy)r— + 2, hp(u)— + () — 1<k<
M= Oemd + R hges + 2 e q
3 i 2,y d
= -g ) — + hy:(u)— + {(0)=— 1<k<r
ngrk = OB E, 2Ny )auj o B,
togetherwith

q T
d d d
Mo = dyg - j;bf“faxi + j=1°J'VJ“5v;

are generators for V. Hence, (4.4) holds exactly when the v-components of the vectors
4l cl+g span CT. These components give (up to signs in columns) exactly the matrix H (since
ng! c1td has v-component = (). Thus, (4.4) fails exactly when the rank of H<r. O
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